
Constructing a Stable and 
Verifiable Computer Forensic 

System 

Daniel Ayers 
Elementary Solutions Ltd 
Auckland, New Zealand 

 
Open Source Digital Forensics Conference 2011 



 This talk is about validation of computer forensic 
software 

 Difficulties validating and using computer forensic tools 
on general purpose operating systems 

 What can we do with open source software, including 
TSK & Linux, to help? 

 

Introduction 



 Tool – Computer forensic software executing within a 
general purpose operating system 

 Positive Validation – Ability to extrapolate from 
successful test(s) that tool is correct. 

 Negative Validation – Ability to demonstrate through 
unsuccessful test(s) that tool is incorrect. 

Definitions 



 Hypothesis – Change in OS environment can cause a 
correct tool to give incorrect results 

 Tested – EnCase v6.18 & Linux (Debian Lenny) 

 Results 

 Modification of OS TZ database broke date/time 
calculations (EnCase & Linux, EnCase broken anyway) 

 Modification of OS codepage/NLS definitions broke 
keyword searching (EnCase, Linux inconclusive) 

An Experiment 



Tool in a General Purpose OS 

Hardware 

Firmware 

Operating System 

Libraries Config 

TOOL 
“Correct” tool provided by 
vendor 

Relies upon proper 
operation of operating 
system, firmware and 
hardware 



 Generic positive validation of a tool (“Tool X v1.4 works 
correctly”) is not possible 

 A successful validation test means tool works on that 
particular computer or one with the same characteristics 
(equivalence) 

 Faults can originate from 
 OS patches (e.g. US DST patch for Windows) 

 Misconfiguration 

 Security compromise (anti-forensics) 

 Changes in date and/or time 

 

Conclusions from Experiment 



 Computer Forensic System – Tool plus all hardware 
and software capable of influencing the behaviour of 
the tool. 

 

 How can you ascertain the scope of a system? 

 Includes specific hardware & software 

 Examine source code (for open source tools) 

 strace/ptrace/Process Monitor (closed source)? 

Computer Forensic System 



 The terms of the software license for most closed 
source tools prohibit reverse engineering and similar 
activities 

 It may not be legal to examine the tool in sufficient 
detail to identify what OS services, libraries and 
configuration data it relies on 

 A dead end for closed source? 

But … License Restrictions! 



 A “forensic appliance” 

 Based upon general purpose OS & open source software 

 Automatic updates disabled 

 Configuration control software (e.g. Puppet) 

 Integrity verification software (e.g. Tripwire) 

 Verification of hardware & firmware using diagnostics & burn-
in software 

 Access evidence data via Lustre, NFS, CIFS or web services. 

 Clusters comprised of many appliances 

Constructing a Stable and Verifiable 
System using Linux, TSK, etc 



Appliance Life Cycle 

BUILD TEST OPERATE 

BUILD TEST OPERATE 

Freeze 
Configuration 

Verify Integrity 

Version 1 

Version 2 



 Need to establish reliable operation of hardware and 
firmware 

 Vendor diagnostic software 

 Burn-in software 

 Memtest86+ 

 IPMI/Hardware monitoring for early detection of 
problems 

 Verify disk operation – prefer hardware RAID 

Hardware Qualification 



 Select stable software (ad-hoc updates not possible) 

 Minimal software install 

 Automated configuration management (e.g. Puppet 
“ensure => version”) 

 Freeze Configuration 

 Disable automated updates (lock file, null sources.lst) 

 Install & configure tripwire 

Build Phase 



 Conduct sufficient testing to support positive 
validation of all components of system 

 Tests should compare output of software on system 
with known correct results 

 Keep detailed records of tests and results (may be 
required as evidence) 

Test Phase 



 Monitor integrity of system (e.g. via tripwire and 
IPMI/BMC/iLO/etc) 

 Occasional repetition of test suite (e.g. when the 
appliance is not required) 

 Maintain logs of which data is processed by what 
appliance 

 Beware of security vulnerabilities – the only way to 
apply patches is to restart the build, test, operate 
cycle! 

 

Operational Phase 



 Want maximum “operate” for minimum “build + 
test” 

 Key is to prove an appliance is equivalent to one that 
was positively validated 

 Identical hardware – qualify each unit, but build & test 
only once then mass deploy? 

Optimisation 



 Generic validation of a tool is not possible as behaviour 
depends on OS correctness & configuration 

 Validation tests must take into account all software & 
hardware factors that may influence outcome 

 Necessary to obtain maximum “operation” time for 
minimum “build+test” 

 Construction of “forensic appliances” using open source 
software is a convenient way to achieve this goal 

 

Conclusion 


