
Plaso - reinventing the super timeline.

Kristinn Gudjonsson

Who Am I?

• Incident responder and a forensic analyst
• Software developer
• Work every now and then for Google
• Been endorsed on LinkedIn for:

• balloon artist
• certified arborist
• party favors
• tires
• and many other things

Why Rewrite log2timeline?

• Few issues came up that required a rewrite
• Does not scale easily
• Single-threaded
• Only second precision
• Output not structured
• Hard to add new features

• Why rewrite in Python?
• Easier to get external contributors
• Easier to integrate with other projects (TSK, VolatilityTM, GRR)
• Most new forensics tools/libraries/scripts are released in Python
• Google doesn’t like Perl
• Easier to maintain than Perl code

Goal With New Version

• Make it easier to create a timeline
• Automate parts of the analysis

• Tagging/categorization
• Statistical analysis and reports

• Clustering/Grouping together events that belong to the same user
action

• Create a set of useful libraries for others to use
• For one-off scripts using parts of the feature set
• To integrate the functionality into other tools

• Make the tool scalable
• Both using cores on machine and across machines

• Not just focus on timelines
• Current examples: image_export and preg

What Does Plaso Provide?

• Scalability (more to come)
• Structured events
• Ability to trace where an event was extracted from
• Metadata stored
• Granular filtering
• Directly parse disk images (TSK)

• Moving to offload that to a new project, pyvfs

• VSS Parsing
• Targeted and kitchen-sink collection
• Tagging of events

How Open Source is it?

• All code stored on Google Code
• https://code.google.com/p/plaso

• All code review done in public
• https://codereview.appspot.com

• Most if not all design documents open to dev group
• https://groups.google.com/forum/#!forum/log2timeline-dev

• Documentation actively updated
• http://plaso.kiddaland.net
• http://blog.kiddaland.net

• Roadmap open to all
• http://goo.gl/7x4pIi

https://groups.google.com/forum/#!forum/log2timeline-dev
https://groups.google.com/forum/#!forum/log2timeline-dev
http://plaso.kiddaland.net
http://plaso.kiddaland.net
http://blog.kiddaland.net
http://blog.kiddaland.net
http://goo.gl/7x4pIi
http://goo.gl/7x4pIi

New Release - 1.0.2alpha

• Halloween brings with it riding
witches and other treats

• Most notably a new plaso release

• Introducing version 1.0.2alpha
• AKA the spooky release

Highlights

• Over 16 new parsers introduced
• Sometimes a thin line between a plugin and a parser

• Three new output modules
• Two new front-ends
• Several enhancements
• Ready for replacing the 0.X branch

Front-Ends Included

log2timeline
Extract timelines.

psort
Post processing.

plasm
Tagging (for now)

pinfo
Display storage metadata

pshell
iPython shell (advanced)

preg
Registry parsing

pprof
Profiling runtime, for devs.

image_export
Exporting files out of an image

Other tools

• As you may have noticed all of the UIs are CLI
• Nothing else in the world?

• Due to easy integration into other tools focus is on CLI
and backend

• Others are welcome to make their own UI’s

• Example UIs
• 4n6time
• GRR (coming soon)

How To Run the Tool?

log2timeline.py [OPTIONS] output_file input_file

log2timeline.py -o 63 [--vss] /cases/12345/storage.dump /cases/12345/evil.dd

• Parameters
• -o 63: This is a disk image and the partition starts at sector offset 63
• Could also use --partition 2
• [--vss]: Optional, include information from VSS
• storage.dump: This is the path of the storage file
• evil.dd: This is the input, the disk image

What to Collect?

Do actual events of
interest get drowned?

The Kitchen Sink

What to Collect?

What if missed
something?

The Targeted Approach

What to Collect?

Build this timeline, brick
by brick

The “let’s start small” Approach

Targeted Collection
• Collect browser history

• Sample target file, does not include all sources
/(Users|Documents And Settings)/.+/AppData/Local/Google/Chrome/.+/History

/(Users|Documents And Settings)/.+/Local Settings/Application Data/Google/Chrome/.
+/History

/Users/.+/AppData/Local/Microsoft/Windows/History/History.IE5/index.dat

/Users/.+/AppData/Local/Microsoft/Windows/History/History.IE5/MSHist.+/index.dat

/Users/.+/AppData/Local/Microsoft/Windows/History/Low/History.IE5/index.dat

/Users/.+/AppData/Local/Microsoft/Windows/History/Low/History.IE5/MSHist.+/index.dat

/Users/.+/AppData/Local/Microsoft/Windows/Temporary Internet Files/Content.IE5/index.
dat

/Users/.+/AppData/Local/Microsoft/Windows/Temporary Internet Files/Low/Content.
IE5/index.dat

/Users/.+/AppData/Roaming/Microsoft/Windows/Cookies/index.dat

/Users/.+/AppData/Roaming/Microsoft/Windows/Cookies/Low/index.dat

/Documents And Settings/.+/Local Settings/History/History.IE5/index.dat

/Documents And Settings/.+/Local Settings/Temporary Internet Files/Content.IE5/index.
dat

/Documents And Settings/.+/Cookies/index.dat

/(Users|Documents And Settings)/.+/AppData/Roaming/Mozilla/Firefox/Profiles/.+/places.
sqlite

/(Users|Documents And Settings)/.+/Local Settings/Application
Data/Mozilla/Firefox/Profiles/.+/places.sqlite

Targeted Collection

• Collect few registry files
• Again not meant as a complete list, just an example

/(Users|Documents And Settings)/.+/NTUSER.DAT

{sysregistry}/SOFTWARE

{sysregistry}/SYSTEM

{sysregistry}/SAM

{sysregistry}/SECURITY

How To Use the Tool

log2timeline.py -o 63 -f filter_file.txt browser_storage.dump /mnt/e01/ewf1

• Same parameters as before, except using “-f”

-f FILE_FILTER, --file_filter FILE_FILTER

 List of files to include for targeted collection of

 files to parse, one line per file path, setup is

 /path/file - where each element can contain either a

 variable set in the preprocessing stage or a regular

 expression

How To Use the Tool

log2timeline.py --partition 2 -f /cases/filters/browser.txt
/cases/12345/plaso.dump image.dd

• Do some review, notice I might want registry
information

log2timeline.py --partition 2 --use_old_preprocess -f /cases/filters/registry.
txt /cases/12345/plaso.dump image.dd

• Review again, reiterate until done
• The --use_old_preprocess indicates you don’t want to regenerate pre

processing data but rely on previous find

Can we start looking
at the timeline now?

Where Did the Output Go?

• The tool stores all the data in a compressed container.
• Need to use “psort” to convert the output.
• Available choices (as of now):

• L2tCSV - the default output of 0.X branch of log2timeline
• MySQL4n6 - PoC MySQL connection for 4n6time
• Dynamic CSV (default output)
• Rawpy - “raw” output of the python event
• Raw - a string representation of the raw protobuf
• SQL4n6 - a SQLite database used by 4n6time
• Pstorage - save back into a plaso storage

• Have different requirements?
• Write your own output module
• Ask the developers to add one for you

How to Get Data Out?

usage: psort.py [-h] [-d] [-q] [-r] [-o FORMAT] [-z TIMEZONE] [-w OUTPUTFILE]

 [--slice DATE] [--slicer] [--slice_size SLICE_SIZE] [-v]

 [PLASOFILE] [FILTER]

• Most common parameters:
• -o FORMAT: choose the output module
• -w OUTPUTFILE: the path to the output file
• PLASOFILE: the path to the storage file
• FILTER: filter the output data set

• Other parameters:
• --slice/--slicer: time slices
• -z TIMEZONE: present timestamps in a different timezone than UTC
• -q: Silence a quick runtime statistics in the end

Basic Psort

psort.py mystorage.dump

• Dumps out all the content in CSV to STDOUT

psort.py -w l2t.csv -o l2tcsv mystorage.dump

• Dump all the content of the storage into a L2tCSV file

pinfo - Where Metadata Counts

• pinfo presents metadata stored in a plaso storage file

pinfo.py [-v] storage.dump

• Prints out information such as
• When and how the tool was run
• What parameters were turned on
• What parsers were loaded
• Total count of events inside storage
• Count of events extracted from each parser

• Verbose information includes
• Information from pre-processing
• Counters from each store

Filtering

• Filters in plaso are modular
• Current implementations are mostly wrapper around the same filter

• Available filters:
• Event filter
• Filter list
• Dynamic filter (affects output)

• Example event filter
"date > '2012-01-01 15:12:02' and parser contains 'prefetch' and (executable
contains 'cmd' or executable contains 'evil')"

• Example dynamic filter
"SELECT datetime, executable WHERE executable contains 'evil' "

Tagging

• PLASM (Plaso Langar Að Safna Minna)
• Tags events based on defined criteria

• https://code.google.com/p/plaso/source/browse/#git%2Fextra

• Simple definition file
TAG NAME

 CONDITION (REGULAR FILTER)

ANOTHER TAG

 CONDITION 1

 CONDITION 2

• Example
Document Printed

 (data_type is 'metadata:hachoir' OR data_type is 'olecf:summary_info') AND
timestamp_desc contains 'Printed'

https://code.google.com/p/plaso/source/browse/#git%2Fextra
https://code.google.com/p/plaso/source/browse/#git%2Fextra

Tagging In Action

plasm.py tag --tagfile=tag_windows.txt mystorage.dump
Applying tags…
DONE (applied 157 tags)

• Run pinfo to see all applied tags
pinfo.py mystorage.dump
…
Counter information:

Counter: Total = 157

Counter: Application Execution = 91

Counter: Startup Application = 20

Counter: AutoRun = 20

Counter: Document Opened = 20

Counter: Document Printed = 18

Counter: File Downloaded = 16

…

Tag Based Filtering

psort.py -q mystorage.dump "SELECT datetime, timestamp_desc, source,
message WHERE tag contains 'Application Execution' and date > '2012-04-
04'"

…
2012-04-05T17:01:00.148000+00:00,Last Time Executed,Windows Job,
Application: cmd /c c:\windows\system32\spinlock.exe Scheduled by: SYSTEM
Run Iteration: ONCE

...

• The keyword here is “tag contains ‘TAG NAME’”

Tying it All Together

1. Run log2timeline.py on a disk image
2. Run plasm to add tagging
3. Run psort.py to show us application executions
4. Run psort again, this time using a slice

Examine the record found earlier:
2012-04-05T17:01:00.148000+00:00,Last Time Executed,Windows Job,
Application: cmd /c c:\windows\system32\spinlock.exe Scheduled by:
SYSTEM Run Iteration: ONCE

psort.py -q --slice "2012-04-05 17:01:00" mystorage.dump

• Displays all records that occurred 5 minutes before and
after this timestamp.

Future Ideas

• Some future ideas*:
• Create an analysis plugin framework (and plugins)
• Change many of the parsers into simpler plugins
• Create codelabs to make it easier for new developers
• Add clustering/grouping of events
• Integrate the tool with GRR
• Support artifacts

* Visit plaso.kiddaland.net and click roadmap for more details

What Can I Do?

• Glad you asked… short answer, plenty
• Contribute code

• You’ll love the code review process

• Testing the tool and providing feedback
• Throw some suggestions our way

• Missing some parsers?
• Output is not intuitive?
• Need a feature?

• Love documentation?
• We’d love to accommodate you
• Plenty of documentation that still needs writing

?
Questions?

