

DAMM: Differential Analysis

of Malware in Memory

Dr. Vico Marziale

Managing Partner

OSDFC 2014

#id

• Managing Partner @504ENSICS Labs in NOLA
• PhD in CS from UNO

• Briefly taught security/crypto stuff

• Many hats:
• R&D
• Penetration testing
• Malware analysis
• Digital Forensics

• Contributor to/developer of: Registry Decoder, Scalpel,
Spotlight Inspector, DAMM

• Co-organizer BSidesNOLA
• Tequila enthusiast

Malware Analysis: Hard!

• That is a problem. Do I get a cookie?

• Multiple types of analysis
• Static (look at the binary)
• Dynamic (run the binary and look)
• Memory Analysis (a hybrid approach)

• Pros and cons re:
• Time/expertise required
• What malicious activity can be found
• How malware can make life difficult

• Goal: Make memory analysis a bit easier. Cookie
now?

Static Analysis

• Tools: disassemblers, decompilers, string/grep

• Pros:
• Malware that’s not running can’t actively mess with you

• Hiding processes

• Or infect your network
• Can see all environment based possible actions

• Cons:
• Also can’t unpack itself, decrypt itself, or perform

network activity (download files, C2 communications)
• Disassembly/reversing is hard (takes time, expertise)
• Can’t directly see effects on entire system

Dynamic Analysis

• Tools: debuggers, sandboxes, procmon, fakenet
• Pros:

• Must be unpacked and decrypted to execute
• Can see network activity
• Less need for disassembly/reversing
• Can potentially see entire running system

• Cons:
• Peek-a-boo - it can (probably) see you

• Whether debugger, host-based analysis, VM, or sandbox
• Then lie to you (_EPROCESS linked lists ++)
• And/or alter its behavior: sleep, exit, crash box, migrate via

speaker/microphone (maybe …)
• And perform malicious activities

Memory Analysis

• A bit like each of the previous

• Run the malware (host, VM, sandbox)
• Like dynamic analysis

• Wait a sec (min, hour, day)
• Some malware is sleepy

• Make copy or copies of memory
• Bit for bit copy (snapshot) of physical RAM

• Analyze snapshot(s)
• Like static analysis

Memory Analysis

• Pros:
• Malware unpacked/unencrypted in memory

• Network activity occurs

• Malware captured in snapshot can’t mess with you

• We get to relax and look at the entire running state of
the system

• Win, right?

Problems

• Tons of Stuff
• Have a 256GB image of RAM. Now what? Volatility!

• Great: parses all the things
• Processes, network connections, DLLs, modules, open

handles to files, sockets, registry, mutexes, etc.

• Difficulty: parses all the things
• 10s of processes, sockets, connection

• Hundreds of DLLs, loaded modules, and services

• Thousands of handles for
• Files, sockets, mutants, registry keys

Problems

• Tons of Samples
• Always more samples than analysis muscle

• What is malicious?
• Most are stock Windows objects: might not need to focus

initially on these
• Or at least are made to look like stock Windows objects

(lssass.exe): definitely need to look at these

• Automation the key (At least for triage)
• Many type of analysis are not easy to automate (IDA)
• Some types are easier (Cuckoo)
• How about for Volatility?
• It is extensible and open source (and fun)

DAMM Intro

• Differential Analysis of Malware in Memory

• FOSS tool built on Volatility

• Initially funded by DARPA Cyber Fast Track

• Python

• Command line

• Windows centric so far (but not for long)

• Duplicates Volatility output for many plugins
• ~30 Volatility plugins combined into ~20 DAMM plugins

• Not so interesting

DAMM Intro (Cont.)

• Can analyze multiple copies of RAM
• E.g., clean versus (suspected) infected

• And highlight differences between them
• New drivers, processes, etc.
• Changes in above

• SQLite backed

• Smart type-aware filtering

• Issue warning of ‘suspicious’ artifacts

• Multiple output formats

• Library-ized: libdamm (parse stuff into objects)

• Data reduction, expert domain knowledge, friendly output,
performance

• Beta-ish!

Use Cases

• In virtual infrastructure
• Snapshot RAM at each boot

• See changes from boot to current

• Or look further back in time

• Non-virtual environments
• Keep Gold Standard disk image?

• Do same for memory image!
• Or generate as needed

• Malware analysis sandboxes
• Configure to take before and after memory snapshots

Basic Usage

offset name pid ppid prio image_path_name
0x25c8830 System 4 0 8

0x225ada0 alg.exe 188 668 8 C:\WINDOWS\System32\alg.exe
0x2114938 ipconfig.exe 304 968 8
0x2086978 TSVNCache.exe 324 1196 8 C:\Program Files\TortoiseSVN\bin\TSVNCache.exe
0x22df020 smss.exe 376 4 11 \SystemRoot\System32\smss.exe

#python damm.py –-profile WinXPSP2x86 –f mem.img –p processes

Lists interesting information about running and exited processes

Output clipped, also gives start time, exit time, invocation, number of
threads and open handles, etc. (combines pslist, psscan, psxview, ...)

Similar plugins exist for ~20 other types of objects: dlls, network connections …

DAMM: Performance

User can opt to store results in SQLite db:

#python damm.py --profile WinXPSP2x86 –f mem.img –p
processes –db mem.db

• Makes re-parsing instant

• Can easily be shipped to other investigators

• Or serve as an archive

• Db includes some simple metadata
• No more need for memory snapshot (for plugin stuff)

• No more need to specify profile

DAMM: DB Query

To use the db:

#python damm.py –p processes –db mem.db

To see some of what is stored in the db:

#python damm.py –db mem.db –q

Profile: WinXPSP2x86

Memimg: cridex.vmem

Computername: ACCOUNTING12

Plugins: processes dlls injection …

Also all of the envars for the explorer process (systemroot++ for warns)

Question?

• How do we determine what is the bad?

• Idea: get a clean copy of RAM from same/similar
machine

• Compare before and after to infer malicious activity
• New running processes

• New loaded modules

• …

• How, though? Use diff and we’re done, right?

To Diff or Not to Diff?

• Have two memory snapshots

• Each has a set of objects
• Processes, DLLs, network connections, drivers

• How do we determine:
• What uniquely identifies an object? (PID? Name?)

• Which objects exist in both copies?

• Only in the infected?

• In both but changed (or not)?

• Do the changes matter?

What is a ‘Process’

• Our notion has set of attributes
• Name
• PID
• PPID
• Physical address
• Start time
• # handles, threads
• …

• Same process on same boot of same machine?
• Physical offset, pid, ppid, name?

• Different machines?
• Plain diff is simply not going to work

DAMM: Differential Analysis

• Use two memory snapshots
• Before infection (or known clean)
• After infection (or suspected of infection)

• Select plugin(s)
• Parse a set of objects from each snapshot into dbs

• Processes, DLLs, etc. from Volatility into objects
• Using shims. Belch.

• Generate differences
• View only

• New objects in the ‘after’ or infected snapshot
• Objects in both, but have changed

• Unique ID defaults set for same boot of same machine

Differencing Example

status offset name pid ppid prio threads handles

New 0x217f650 wpabaln.exe 1184 624 8 1 58

New 0x2408a78 wuauclt.exe 1596 1008 8 7 172

New 0x2288a78 WORDPAD.EXE 320 1204 8 2 98

New 0x22d3c10 cmd.exe 972 1956 8 1 33

New 0x216d228 win32dd.exe 1120 972 8 1 22

Changed 0x223d6a0 VMWARESERVICE.E 1812 668 13 2->3 82->132

Changed 0x247bb28 EXPLORER.EXE 1956 1932 8 16 293->427

#python damm.py –p processes –db infected.db –diff clean.db

DAMM: Unique ID

• For processes, unique id defined as
• pid, ppid, name, creation_time

• This so far works for same machine same boot

• What about when not in controlled sandbox
environment?

• Like a diff with clean image from another execution

• Change the unique id
• name, image_path_name, command_line?
• Accounts for binaries in wrong places, and normal

duplicate names: svchost

Unique ID Example (1)

Here the dbs were generated from 2 different WinXPSP2 images
from different machines:

 status offset name pid ppid prio threads handles

New 0x4b5a980 VMwareUser.exe 452 1724 8 8 204

New 0x655fc88 VMUpgradeHelper 1788 676 8 5 100

New 0x6945da0 spoolsv.exe 1432 676 8 14 137

New 0x1122910 svchost.exe 1028 676 8 88 1395

#python damm.py –db infected.db –p processes –diff clean.db

Everything (except System) shows up as new. Not helpful.

Unique ID Example (2)

Here also the dbs were generated from 2 different WinXPSP2
images from different machines:

#python damm.py –db infected.db –p processes –diff clean.db
–u name image_path_name command_line

status offset name pid ppid prio threads handles
New 0x10c3da0 wuauclt.exe 1732 1028 8 7 178
New 0x69d5b28 vmtoolsd.exe 1668 676 8 5 218

Changed
0x1bcd0b8-
>0x1214660 System 4 0 8 56->61 ->179

Changed
0x18b4648-
>0x1122910 svchost.exe

1080-
>1028

692-
>676 8 66->88

1140-
>1395

More useful output, we see changed processes again (13/28 new)

DAMM: Filtering

• Further reduce set of objects

• Filter on objects’ attribute value: pid 4242
• Find all about some process

• DAMM knows PIDs versus other integers

• String search: string evil.dll
• Find all occurrences of a DLL name

• DAMM knows which attributes to search

• Filtering can be based on exact matching or partial

processes
offset name pid ppid prio image_path_name
0x4a4b5f8 lanmanwrk.exe 1180 1060 8 C:\WINDOWS\System32\lanmanwrk.exe

privileges
pid filename value privilege present enabled default

1180 lanmanwrk.exe 17 SeBackupPrivilege TRUE

1180 lanmanwrk.exe 23 SeChangeNotifyPrivilege TRUE TRUE TRUE

1180 lanmanwrk.exe 20 SeDebugPrivilege TRUE

1180 lanmanwrk.exe 10 SeLoadDriverPrivilege TRUE TRUE

handles
offset pid type name
0x80f5c260 1180 File …\Documents and Settings\Administrator\Desktop
0xe1621ec0 1180 Key …\WINDOWS\CURRENTVERSION\RUN
0xe1dd8a70 1180 Key …\WINSOCK2\PARAMETERS\NAMESPACE_CATALOG5
0xe10f5188 1180 Key …\WINSOCK2\PARAMETERS\PROTOCOL_CATALOG9
0xe1e96d30 1180 Key …\WINDOWS\CURRENTVERSION\INTERNET SETTINGS

#python damm.py --db infected.db –p X –filter pid:1180

And so on for DLLs, network connections, etc…

DAMM: Warnings

Automatically search for suspicious objects:
• Processes running from temp directories
• DLLs loaded from temp directories
• PE headers in injectable memory pages
• For core Windows processes: correct priority, parent-

child relationship, binary path
• Hidden processes, dlls
• Mangled filenames for important processes
• MFT pf entries for suspicious processes
• From the Volatility cheat sheet, The Book, “Know Your

Windows Processes or Die Trying,” and elsewhere

• Code injection:
• services.exe (pid: 668) has PE header in injection.

• Number of process instances:
• lsass.exe (pid: 1928) has 3 instances. Only one instance should exist!

• Proper parent/child process relationships:
• lsass.exe (pid: 1928) parent process expected: winlogon.exe, actual:

services.exe.

• Boot time processes starting long after boot:
• lsass.exe (pid: 868, "C:\WINDOWS\\system32\\lsass.exe") started

18703082.0 seconds after boot time which may be suspicious.

• Process priority:
• lsass.exe (pid: 1928) base priority expected: 9, actual: 8.

• Process unlinking:
• 1_doc_RCData_61 (pid: 1336) may be a hidden process.

• Prefetch entries for suspicious processes
• File: [MFT FILE_NAME] WINDOWS\Prefetch\REG.EXE-0D2A95F7.pf is a

prefetch entry for a suspicious process.

• Mangled names:
• winninit.exe ((pid: 4792) is named suspiciously similarly to a Windows

process: wininit.exe.

#python damm.py –db infected.db --warnings

Output Formats

To further ease analysis, output (using db) can be:

- TSV (for Excel or whatever, use –tsv)

- Grepable (if filtering doesn’t suffice, use --grepable)
dlls: process_id: 584 process_name: csrss.exe dll_base: 0x75b50000 load_count: 0x3

dlls: process_id: 584 process_name: csrss.exe dll_base: 0x75b60000 load_count: 0x2

dlls: process_id: 584 process_name: csrss.exe dll_base: 0x77dd0000 load_count: 0x5

dlls: process_id: 584 process_name: csrss.exe dll_base: 0x7e720000 load_count: 0x1

- Screen formatted (the default, use ‘less –S’ or equivalent)

Conclusion

• That’s about it for now.

• Next up?
• More warnings

• Full Windows support

• Then maybe Linux and Mac

• More funding?

• Lots of things to think about in light of the
presentations from yesterday and today

Questions?

Dr. Vico Marziale

vico@504labs.com

@vicomarziale

https://github.com/504ensicsLabs/DAMM

