
SCEADAN
Systematic Classification Engine for Advanced Data ANalysis

Nicole Beebe, Ph.D.
The University of Texas at San Antonio
Dept. of Info. Systems & Cyber Security

Simson Garfinkel, Ph.D.
The Naval Postgraduate School

Dept. of Computer Science

Caveats

• UTSA funding sources
– NPS Grant No. N00244-11-1-0011
– NPS Grant No. N00244-13-1-0027
– UTSA Provost’s Summer Research Mentorship Program

• Disclaimer
– Any opinions, findings, and conclusions or

recommendations expressed in this publication are those
of the author(s) and do not necessarily reflect the views of
the Naval Postgraduate School

BACKGROUND
Motivation, Use Cases, Literature Review

Intro: Data/File Type Determination
• Challenging on fragments (non-header) and files without accurate

signatures/extensions

o Poor prediction accuracies in large multi-class situations
o No useful tools available after 10 years of research by field
o Significant scalability and speed issues

Primary Use Cases

• Digital forensics
– Focus investigative efforts (e.g. search hit ranking feature)
– Triage and disk profiling
– Fragment identification/isolation, file recovery/reassembly

• Intrusion detection
– Overcome signature-based obfuscation techniques
– Anomaly detection

• Context triggered indication & warning (e.g. payload vs. protocol),
as opposed to traffic-based, “bursty” anomaly detection

– Exfiltration, extrusion detection and profiling

Other Possible Use Cases

• Firewalls
– Content based blocking

• Malware
– Detection: Content based malware, virus detection
– Analysis: Mapping binary objects

• Steganalysis
– Detecting statistically abnormal file types due to content
– Isolating “stegged” data within binary objects

• CAVEAT: Use traditional methods when you have
trusted file signatures!

Literature Review

• Penrose et al. (2013)
• Patel and Singh (2013)
• Alherbawi et al. (2013)
• Roussev and Quates (2013)
• Xie et al. (2013)
• Fitzgerald et al. (2012)
• Gopal et al. (2011)
• Axelsson (2010)
• Conti et al. (2010)
• Li et al. (2010, 2005)
• Ahmed et al. (2010, 2009)

• Cao et al. (2010)
• Amirani et al. (2012, 2011, 2008)
• Calhoun and Coles (2008)
• Moody and Erbacher (2008)
• Zhang and White (2007)
• Veenman (2007)
• Erbacher and Mulholland (2007)
• Karresand and Shahmehri (2006)
• Hall and Davis (2006)
• McDaniel and Heydari (2003)
• Shannon (2004)

Much research … but no tools

Two Fundamental Approaches

• Naïve statistical classification
– Machine learning or metrics based approaches

• Byte frequency distribution (n-gram analysis)
• Complexity measures (entropy, Kolmogrov complexity, etc.)

• Specialized, semantic based approaches

– Utilize knowledge of internal file structures
Ex: JPEG sections; ZIP “local file headers”

– Look for predictive, string based indicators
Ex: >>stream preceding a Deflate compressed stream = .PDF

– Not signature based in traditional sense

SCEADAN employs a statistical approach

Byte Frequency Distributions

n-gram Analysis:
Unigram = 1 byte

256 “features”
\x00, \x01 … \xFF

Bi-gram = 2 bytes
65,536 “features”

\x0000, \x0001, … \xFFFF

Images from Amirani et al. (2012)

A few non-ngram features
 (e.g. entropy, kurtosis, …)

Including Headers Biases Results

 Legend

 No header data in training set

 Sample includes some header segments

 All sample observations include headers (unit of analysis = full file)

Sceadan (2013)

Sceadan (model/tool) does not rely on header segments (but can use them)

SCEADAN
Tool Developed

• The name
– Systematic Classification Engine for Advanced Data ANalysis
– Old English / Proto-Germanic for “To Classify”

• Naïve statistical classifier
– Classifies independent of signatures, extension, file system data
– Uses N-gram features (concatenated unigram+bigram vectors)
– Built-in training and prediction modes
– Leverages LIBLINEAR (http://www.csie.ntu.edu.tw/~cjlin/liblinear/)
– Uses support vector machines (SVMs)
– Built-in model (≈50MB), but you can train/use your own

Tool Developed: Sceadan

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

True Positive Prediction Rates in our Experiments
Type Ext Rate %
Delimited .csv 100
JSON records .json 100
Base64 encoding .b64 100
Base85 encoding .a85 100
Hex encoding .urlenc 100
Postscript .ps 100
Log files .log 99
CSS .css 99
Plain text .text, .txt 98
XML .xml 98
FS-EXT .ext3 97
Java Source Code .java 97
JavaScript code .js 95
Bi-tonal images .tif, .tiff 95
HTML .html 91
GIF .gif 86
MS-XLS .xls 84
MP3 .mp3 84
Bitmap .bmp 83
AVI .avi 78
JPG .jpg 76
BZ2 .bz2 72
H264 .mp4 72
FS-NTFS .ntfs 71

Type Ext Rate %
AAC .m4a 69
MS-DOCX .docx 62
WMV .wmv 59
PDF .pdf 54
MS-DOC .doc 53
MS-XLSX .xlsx 50
FLV .flv, .FLV 44
ZLIB – DEFLATE .gz 29
Portable Network Graphic .png 28
FS-FAT .fat 25
MS-PPTX .pptx 21
ZLIB - DEFLATE .zip 20
MS-PPT .ppt 14
ENCRYPTED N/A 13

Average Sceadan prediction accuracy:
71.5%*

(NOTE: Later modeling netted 73.5% accuracy)

Random chance classification:
1/40 = 2.5%

Train/Test: 60%:40% (million fragment sample)

* Beebe et al. (2013) “Sceadan: Using Concatenated N-Gram Vectors for Improved Data/File Type Classification,”
IEEE Transactions on Information Forensics and Security, (8:9), pp. 1519-1530.

v1.2.1 built-in model performance

Sceadan Performance Relative to Others (2013)

Number of Classes Predicted by Classifier

Pr
ed

ic
tio

n
A
cc

ur
ac

y

Higher Accuracy
But Few Classes

Typical Accuracy Degradation
As Multi-Class Challenge Increases

Sceadan v1.0
73.5% Accuracy*
40 Classes

NOTE: 9 lowest performing
types are significantly
under-researched classes
(e.g. Office2010, FS data)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

*Additional model training has improved
classifier accuracy from 71.5% to 73.5%

Built-In Model Details (Sceadan v1.2.1)

• Model file
– model.ucv-bcv.20130509.c256.s2.e005
– MD5 D068034D64329ECCA25DD76F515656A7

• Model trained using digitalcorpora.org files
– Random subset of GOVDOCS1 files (types: see Beebe et al. 2013)
– FILETYPES1 data set (UTSA open source file collection)

• 512B training samples (n=1,800 samples of each type)
– Segmented all files into 512 byte blocks
– Removed header sector

• Model parameters & solver function
– C=256, e=.005, gamma=N/A (linear kernel)
– L2 regularized L2 loss function, primal solver

Model Building (Training)

• Motivation
– Train on different data types
– High number of classes degrades model performance
– Experiment with different block sizes, features, etc.

• Training data must be verified, prepared, cleansed
• Sceadan optimizes model parameters

– Runs grid.py
– Optimizes C (surface smoothing parameter)
– Optimizes gamma (single training point influence)

• Sceadan randomly splits sample into train:test sets

It is important to build your own models.

Other Capabilities

• Ability to write LibSVM compliant vectors to output
• Multi-threaded, in-memory/compiled model
• Creates confusion matrices automatically
• Sub-block classification capability

– Can specify sub-block size within files to classify

• Can classify individual files, or in directory mode:

Block offset
(0=full file classified)

Predicted Type Input path/filename
These samples were named
<<true type>>.txt

Miscellaneous

• Copyright: University of Texas at San Antonio
• License: GPLv2
• Written in C
• Linux CLI based
• Code rewritten/improved in 2014 by NPS
• To obtain: github.com/nbeebe/sceadan

LATEST RESEARCH
Future Code Development Plans

Scatter Plot of Unigram Weights (4 Models) for .EXE Files

U
ni

gr
am

s
(b

yt
e

va
lu

es
)

Negative weighted
features help classify
sample as NOT type

Positive weighted
features help classify
sample as type

High absolute value features
are good discriminators

Not all n-grams are equally discriminatory

Prediction Accuracy as % Unigrams Decline

14% unigrams
65% accuracy

12% unigrams
75% accuracy

Research findings suggest 15-20%
of unigrams/bigrams can be used
to obtain similar performance, at
Much reduced computational cost.

100% unigrams
81% accuracy

100% unigrams
69% accuracy

Hierarchical Classification Modeling

• Advanced, hierarchical classification design
– Improve accuracy via hierarchical data class classification,

followed by data type classification

– In practice, class classification
• Becomes triage mechanism to focus classification efforts
• Improves prediction accuracy

– Reduces multi-class size in tough classes
– Enables better feature selection within classes
– Reduces problem of over-fitting

Conti et al. (2010)

COMMENTS / QUESTIONS ?

Nicole.Beebe@utsa.edu
(210) 458-8040
(210) 269-5647 (Cell)

	SCEADAN�Systematic Classification Engine for Advanced Data ANalysis
	Caveats
	Background
	Intro: Data/File Type Determination
	Primary Use Cases
	Other Possible Use Cases
	Literature Review
	Two Fundamental Approaches
	Byte Frequency Distributions
	Slide Number 10
	Sceadan
	Slide Number 12
	True Positive Prediction Rates in our Experiments
	Sceadan Performance Relative to Others (2013)
	Built-In Model Details (Sceadan v1.2.1)
	Model Building (Training)
	Other Capabilities
	Miscellaneous
	Latest Research
	Slide Number 20
	Slide Number 21
	Hierarchical Classification Modeling
	Comments / questions ?

