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BACKGROUND 
Motivation, Use Cases, Literature Review 



Intro: Data/File Type Determination 
• Challenging on fragments (non-header) and files without accurate 

signatures/extensions 
 

o Poor prediction accuracies in large multi-class situations 
o No useful tools available after 10 years of research by field 
o Significant scalability and speed issues 



Primary Use Cases 

• Digital forensics 
– Focus investigative efforts (e.g. search hit ranking feature) 
– Triage and disk profiling 
– Fragment identification/isolation, file recovery/reassembly 

• Intrusion detection 
– Overcome signature-based obfuscation techniques 
– Anomaly detection 

• Context triggered indication & warning (e.g. payload vs. protocol), 
as opposed to traffic-based, “bursty” anomaly detection 

– Exfiltration, extrusion detection and profiling 



Other Possible Use Cases 

• Firewalls  
– Content based blocking 

• Malware 
– Detection: Content based malware, virus detection 
– Analysis: Mapping binary objects 

• Steganalysis  
– Detecting statistically abnormal file types due to content 
– Isolating “stegged” data within binary objects 

 

• CAVEAT: Use traditional methods when you have 
trusted file signatures! 
 



Literature Review 
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• Gopal et al. (2011) 
• Axelsson (2010) 
• Conti et al. (2010) 
• Li et al. (2010, 2005)  
• Ahmed et al. (2010, 2009) 

 

• Cao et al. (2010) 
• Amirani et al. (2012, 2011, 2008) 
• Calhoun and Coles (2008) 
• Moody and Erbacher (2008) 
• Zhang and White (2007) 
• Veenman (2007) 
• Erbacher and Mulholland (2007) 
• Karresand and Shahmehri (2006) 
• Hall and Davis (2006) 
• McDaniel and Heydari (2003) 
• Shannon (2004) 

 

Much research … but no tools 



Two Fundamental Approaches 

• Naïve statistical classification 
– Machine learning or metrics based approaches 

• Byte frequency distribution (n-gram analysis) 
• Complexity measures (entropy, Kolmogrov complexity, etc.) 

 
• Specialized, semantic based approaches 

– Utilize knowledge of internal file structures 
Ex: JPEG sections; ZIP “local file headers” 

– Look for predictive, string based indicators 
Ex: >>stream  preceding a Deflate compressed stream = .PDF 

– Not signature based in traditional sense 

SCEADAN employs a statistical approach 



Byte Frequency Distributions 

n-gram Analysis: 
Unigram = 1 byte 

256 “features” 
\x00, \x01 … \xFF 

 

Bi-gram = 2 bytes 
65,536 “features” 

\x0000, \x0001, … \xFFFF 

 

Images from Amirani et al. (2012) 

A few non-ngram features 
   (e.g. entropy, kurtosis, …) 



Including Headers Biases Results 

     Legend 

     No header data in training set 

     Sample includes some header segments 

     All sample observations include headers (unit of analysis = full file) 

Sceadan (2013) 

Sceadan (model/tool) does not rely on header segments (but can use them) 



SCEADAN 
Tool Developed 



• The name 
– Systematic Classification Engine for Advanced Data ANalysis 
– Old English / Proto-Germanic for “To Classify” 

 

• Naïve statistical classifier 
– Classifies independent of signatures, extension, file system data 
– Uses N-gram features (concatenated unigram+bigram vectors) 
– Built-in training and prediction modes 
– Leverages LIBLINEAR (http://www.csie.ntu.edu.tw/~cjlin/liblinear/) 
– Uses support vector machines (SVMs) 
– Built-in model (≈50MB), but you can train/use your own 

Tool Developed: Sceadan 

http://www.csie.ntu.edu.tw/~cjlin/liblinear/


True Positive Prediction Rates in our Experiments 
Type Ext Rate % 
Delimited .csv 100 
JSON records .json 100 
Base64 encoding .b64 100 
Base85 encoding .a85 100 
Hex encoding .urlenc 100 
Postscript .ps 100 
Log files .log 99 
CSS .css 99 
Plain text .text, .txt 98 
XML .xml 98 
FS-EXT .ext3 97 
Java Source Code .java 97 
JavaScript code .js 95 
Bi-tonal images .tif, .tiff 95 
HTML .html 91 
GIF .gif 86 
MS-XLS .xls 84 
MP3 .mp3 84 
Bitmap .bmp 83 
AVI .avi 78 
JPG  .jpg 76 
BZ2 .bz2 72 
H264 .mp4 72 
FS-NTFS .ntfs 71 

Type Ext Rate % 
AAC .m4a 69 
MS-DOCX .docx 62 
WMV .wmv 59 
PDF .pdf 54 
MS-DOC .doc 53 
MS-XLSX .xlsx 50 
FLV .flv, .FLV 44 
ZLIB – DEFLATE .gz 29 
Portable Network Graphic .png 28 
FS-FAT .fat 25 
MS-PPTX .pptx 21 
ZLIB - DEFLATE .zip 20 
MS-PPT .ppt 14 
ENCRYPTED N/A 13 

Average Sceadan prediction accuracy: 
71.5%* 

(NOTE: Later modeling netted 73.5% accuracy) 
 

Random chance classification: 
1/40 = 2.5% 

 
Train/Test: 60%:40% (million fragment sample) 

* Beebe et al. (2013) “Sceadan: Using Concatenated N-Gram Vectors for Improved Data/File Type Classification,” 
IEEE Transactions on Information Forensics and Security, (8:9), pp. 1519-1530. 

v1.2.1 built-in model performance 



Sceadan Performance Relative to Others (2013) 

Number of Classes Predicted by Classifier 
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Higher Accuracy 
But Few Classes 

Typical Accuracy Degradation 
As Multi-Class Challenge Increases 

Sceadan v1.0 
73.5% Accuracy* 
40 Classes 
 
NOTE: 9 lowest performing 
types are significantly 
under-researched classes 
(e.g. Office2010, FS data) 
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*Additional model training has improved 
classifier accuracy from 71.5% to 73.5% 



Built-In Model Details (Sceadan v1.2.1) 

• Model file 
– model.ucv-bcv.20130509.c256.s2.e005                                         
– MD5 D068034D64329ECCA25DD76F515656A7 

• Model trained using digitalcorpora.org files  
– Random subset of GOVDOCS1 files (types: see Beebe et al. 2013) 
– FILETYPES1 data set (UTSA open source file collection) 

• 512B training samples (n=1,800 samples of each type) 
– Segmented all files into 512 byte blocks 
– Removed header sector 

• Model parameters & solver function 
– C=256, e=.005, gamma=N/A (linear kernel) 
– L2 regularized L2 loss function, primal solver 

 



Model Building (Training) 

• Motivation 
– Train on different data types 
– High number of classes degrades model performance 
– Experiment with different block sizes, features, etc. 

• Training data must be verified, prepared, cleansed 
• Sceadan optimizes model parameters 

– Runs grid.py  
– Optimizes C (surface smoothing parameter) 
– Optimizes gamma (single training point influence) 

• Sceadan randomly splits sample into train:test sets 
 

It is important to build your own models. 



Other Capabilities 

• Ability to write LibSVM compliant vectors to output 
• Multi-threaded, in-memory/compiled model 
• Creates confusion matrices automatically 
• Sub-block classification capability 

– Can specify sub-block size within files to classify 

• Can classify individual files, or in directory mode: 
 

Block offset  
(0=full file classified) 

Predicted Type Input path/filename 
These samples were named 
<<true type>>.txt 



Miscellaneous 

• Copyright: University of Texas at San Antonio 
• License: GPLv2  
• Written in C 
• Linux CLI based 
• Code rewritten/improved in 2014 by NPS 
• To obtain: github.com/nbeebe/sceadan 

 



LATEST RESEARCH 
Future Code Development Plans 



Scatter Plot of Unigram Weights (4 Models) for .EXE Files 
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Negative weighted 
features help classify 
sample as NOT type 

Positive weighted 
features help classify 
sample as type 

High absolute value features 
are good discriminators 

Not all n-grams are equally discriminatory 



 

Prediction Accuracy as % Unigrams Decline 

14% unigrams 
65% accuracy 

12% unigrams 
75% accuracy 

Research findings suggest 15-20% 
of unigrams/bigrams can be used 
to obtain similar performance, at 
Much reduced computational cost. 

100% unigrams 
81% accuracy 

100% unigrams 
69% accuracy 



Hierarchical Classification Modeling 

• Advanced, hierarchical classification design 
– Improve accuracy via hierarchical data class classification, 

followed by data type classification 
 
 
 
 

– In practice, class classification 
• Becomes triage mechanism to focus classification efforts 
• Improves prediction accuracy  

– Reduces multi-class size in tough classes 
– Enables better feature selection within classes 
– Reduces problem of over-fitting 

 

 

 

Conti et al. (2010) 



COMMENTS / QUESTIONS ? 

Nicole.Beebe@utsa.edu 
(210) 458-8040  
(210) 269-5647 (Cell) 
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