
October 28, 2015 | Westin Washington Dulles, Herndon, VA

Brian Carrier
Basis Technology

Python Autopsy: A Quick
Introduction to Scripting Autopsy

•  Python is a good language to learn.

•  Autopsy is a good platform for writing Python scripts.

•  You should try it. All the cool kids are doing it.

#OSDFCon 2

Intended Takeaways

•  We were visionaries

•  Everyone was asking for it.
•  It’s an easy language to start using.

•  Lots of other tools support it.

•  It was easy for us to integrate (Jython).

•  It was much easier than writing our own language!

#OSDFCon 3

Why Did We Choose Python?

•  Developing forensics applications has three challenges:
1.  Input Types: File systems, image formats, logical files, ZIP file

contents, file carving, etc.

2.  User Interaction: interfaces, reports, etc.

3.  Analytics: Finding a certain file, parsing its contents, etc.

•  Autopsy takes care of #1 & #2. Allowing you to focus on #3.

#OSDFCon 4

Why Should You Write For Autopsy?

#OSDFCon 5

Background: Very High-level
Programming Concepts

•  Variable: A name for some value. Think Algebra.

A2 + B2 = C2

A, B, and C are variables.

In Python: fileName = “badfile.exe”

•  Class: A collection of data.

•  A “File” class would have data for its name, size, times etc.

•  You can get the data from the class:

 fileName = file.getName()

#OSDFCon 6

Variables and Classes

•  Method: A set of instructions with a name
def openDoor():

 extend arm to doorknob

 grab doorknob with hand

 turn doorknob clockwise

 push door

 let go of doorknob

•  Methods can then be called in a single line:
openDoor()

#OSDFCon 7

Methods

•  You can pass in information to the method via an argument
def openDoor(direction):
 extend arm to doorknob
 grab doorknob with hand
 turn doorknob direction
 push door
 let go of doorknob

•  Specify the arguments in each call
openDoor(“clockwise”)
openDoor(“counter clockwise”)

#OSDFCon 8

Methods with Arguments

#OSDFCon 9

Writing An Autopsy Module

1.  Pick your module type.

2.  Find the closest Autopsy template or tutorial to copy.

3.  Search for the word “TODO” and put in your own names, etc.

4.  Write your analytics in the “analysis method”.

#OSDFCon 10

4 Basic Steps

•  There are 8 module types in Autopsy.

•  Only 3 of which can be written in Python though.

11

Step #1: Pick Your Module Type

#OSDFCon

Ingest Modules

12#OSDFCon

•  Analyze content in a data source after it is added to a case.

#OSDFCon 13

Types of Ingest Modules

MD5/SHA1
Hash

Calculation
Hash

Lookup
Add Text to
Keyword

Index
...EXIF

Extraction
MD5/SHA1

Hash
Calculation

Hash
Lookup

Add Text to
Keyword

Index
...EXIF

Extraction
MD5/SHA1

Hash
Calculation

Hash
Lookup

Add Text to
Keyword

Index
...EXIF

Extraction
MD5/SHA1

Hash
Calculation

Hash
Lookup

Add Text to
Keyword

Index
...

Web
Browser
Analysis

E01 File
EXIF

Extraction

Registry
Analysis

File Ingest Modules

Data Source Ingest Modules

Report Modules

14#OSDFCon

•  Run after all analysis is complete to create an output report.

•  Pick the type based on your analysis needs.

•  Do you need to see every file?

•  Do you know the name of the files you want?

•  Do you want to run after everything has been run?

#OSDFCon 15

Summary of Python Module Options

•  Find the closest tutorial:
•  File Ingest Module: Flag files based on size.

•  Data Source Ingest Modules:
•  Find SQLite databases and parse them.

•  Run a command line tool on a disk image.

•  Report Module: Create CSV report.

•  Review code in the templates on github:
https://github.com/sleuthkit/autopsy/tree/develop/pythonExamples

#OSDFCon 16

Step #2: Find Something to Borrow

Adapt the templates to you

TODO: give it a unique name. Will be shown in module list

moduleName = "Sample File Ingest Module”

#OSDFCon 17

Step #3: Search for “TODO”

•  Each module type has a method that does the analytics.

•  For example, File Ingest Modules have a method named
“process” that is passed in a file to analyze.

def process(self, file):

•  It is defined in the template you copied.

•  You write the steps in the method to do whatever you want.

#OSDFCon 18

Step #4: Write the “Analysis Method”

•  You need to get your results to the user somehow.

•  Two common ways:
1.  Lazy: Save output to a file and add file as a “Report”.

2.  Better: Create an artifact and post it to the blackboard.

•  ARTIFACT: WEB_BOOKMARK

•  URL: http://www.sleuthkit.org/

•  DATE: October 28, 2015

•  Artifacts and reports are both shown in the tree.

#OSDFCon 19

Step #4: Publish to User

#OSDFCon 20

Seeing The Results

Artifacts

Reports

•  July ‘15 Tutorial on www.basistech.com

•  Big and round files:
•  Bigger than 10MB and multiple of 4096 bytes

•  Could be encrypted volumes

•  Step #1: Pick the type
•  We want to look at all files, even ZIP file contents.

•  File Ingest Module.

•  Steps #2 and #3: Copy the file ingest template and update its
name, etc.

#OSDFCon 21

Example: Find big and round files

•  Step #4: Write the analysis logic:
•  Check the size of each file

•  If it is big and round, flag it

•  Recall that file-level Ingest Modules are passed in a file:
def process(self, file):

•  We check the size of the file:
if ((file.getSize() > 10000000) and ((file.getSize() % 4096) == 0)):

 # YEA!!!, do something with it

else:

 return OK

#OSDFCon 22

Find big and round files (contd.)

•  We’re going to make an “Interesting File” artifact
art = file.newArtifact(TSK_INTERESTING_FILE_HIT)

att = BlackboardAttribute(TSK_SET_NAME, "Big and Round Files")

art.addAttribute(att)

#OSDFCon 23

Let’s Tell The World About It!

def process(self, file):

 if ((file.getSize() > 10000000) and ((file.getSize() % 4096) == 0)):

 art = file.newArtifact(TSK_INTERESTING_FILE_HIT)

 att = BlackboardAttribute(TSK_SET_NAME, "Big and Round Files")

 art.addAttribute(att)
 return OK

•  This will find files in all file systems, compound files, carved files,
etc.

•  This provides easy feedback to the user.

#OSDFCon 24

Final Method

#OSDFCon 25

How the User Uses It

#OSDFCon 26

How the User Sees the Results

•  It’s easy to get started with writing Python modules for Autopsy.

•  Autopsy does all of the infrastructure work for you.

#OSDFCon 27

Conclusion

Brian Carrier
brianc@basistech.com

617-386-2000

#OSDFCon 28

Contact Information

