
Rekall Forensic
We can remember it for you

wholesale!

Michael Cohen Google Inc.
scudette@gmail.com

Rekall in a nutshell
● Rekall started life as Memory Forensic tool with a focus on

○ Speed
○ Reliability - supports more Operating systems reliably out of the box.

■ Automatic profile selection from a vast library.
■ Huge library of Windows kernel profiles.
■ Transparently support common Linux distributions through profile indexes.

○ Ease of integration into other tools (Simple JSON based API)

● Rekall has always had a focus on live analysis:
○ The Winpmem, MacPmem and LinPmem drivers provide direct access to the physical

memory.

Rekall can now use the APIs
● Some things are faster and more reliable to do through the API

○ Memory analysis is still kind of fragile - have to have the right profiles.
○ Sometimes it is an overkill e.g.:

■ Detecting simple DLL injection is faster and more effective through the OS APIs.
Kernel level subversion is not often used.

■ Yara scanning processes and user space is often more reliable (No need to worry
about paging or smear).

● Rekall has live modes
○ --live Memory - Automatically inserts memory drivers, loads profiles and analyzes

memory directly.
○ --live API - Switches Rekall into API mode where many plugins are available to use the API:

■ WMI - issue WMI queries.
■ Glob - file system based plugins
■ Yara scanners for files, process memory etc.

Rekall is focused on live analysis and collection.
● With the emergence of API based plugins we can implement some of the

common collection tools:
○ Forensic Artifacts are community maintained tool agnostic recipes for collection of

forensically critical information.
○ Timelining is a commonly used technique

The Rekall Agent
● GRR like agent focused on collection, performance and ease of

deployment
● Was born from a thought experiment - Redesign GRR:

○ What if it was really simple?
○ What if it was easy and cheap to deploy?

● Everything is a file!
○ Just copy files around - turns out we are really good at doing this in scale!

● The Rekall Agent is simply:
○ Get a JSON message describing what to do.
○ Does it and prepares files (Result Collections, File Uploads)
○ Upload the files to the specified location.

● The Rekall Agent Controller:
○ Creates the JSON file instructing the client.
○ Collect and manage the result files.

Architecture Overview

Installing the Rekall Agent - Create Bucket

Installing the Rekall Agent - Create Service
Account

Installing the Rekall Agent - Configure Clients.

Enrolling Client
● Rekall Agent is a zero configuration client.

○ Client is installed with a deployment config file.
○ The Client writes state into the client (Termed the writeback location)

■ Remembers its client ID, Client’s private and public keys,
■ Last timestamp of executed server job (Termed Flow).
■ Currently executing action (to track crashes).

○ When the client is run for the first time it generates its own keys and client ID

● The Client’s Startup sequence
○ Contact the manifest file of the deployment from its config file.

○ Verifies the manifest and executes any commands present there (termed the Interrogate
flow).

○ Starts to query its message queues for commands.

● Note - no server side support required for clients to become operational.

Rekall Agent Result Collections
● At the end of the day the Rekall Agent produces Result Collections.
● A stand alone file with results of an EFilter Query over Rekall plugins

○ Currently SQLite files.
○ One Result Collection per Efilter query.
○ Note that EFilter queries can combine results from several Rekall plugins.

● An example query:

select proc.name, proc.pid, ppid, start_time from pslist()

What is efilter?
SQL like query language for Rekall plugins

Efilter queries can combine the output from
several plugins in a flexible way.

Glob for all
*.exe files in
the windows
directory, and
yara scan them
for "Microsoft"
encoded in
UTF16.

glob "c:\windows*.exe"

Now use the search plugin to insert query
parameters:

plugins.search('select * from
file_yara(paths: (select
path.filename from
glob("c:\windows*.exe")).filename,
binary_string: {str})',
query_parameters=dict(str="Microsoft"
.encode("utf-16-le").encode("hex")))

Rekall Agent Flows
● A Flow is a logically related sequence of requests directed at the client.

○ Each action will have its own Result Collection
○ All actions run at approximately the same time.

● For example, Collect the following artifacts: Running Processes, Open
sockets, Registry artifacts.

● Flows can have a pre condition:
○ Precondition is an efilter expression so it can use the output of any plugin.
○ For example, collect all running processes if a registry key is present.

● Flows are directed at each client:
○ They are written into the client’s private jobs queue
○ Result collections are collected under the client’s namespace in the file store.

Rekall Agent Hunts
● Sometimes we want to run the same flow on multiple clients at once.

○ Rather than write the flow object to 10,000 individual queues we simply post the job
message on a shared queue.

○ All clients query the All queue (i.e. they constantly read that file).

● Client participation in the hunt is based on self selection:
○ Hunts typically have a pre-condition, for example:

■ Run this hunt on all windows machines

 Select * from agent_info() where key=='system' and
value=='Windows'

■ Run this hunt on all machines with this process running

 Select * from pslist() where regex_search(Name,
"chrome")

How do I check 100,000 hosts for badness?
● Step 1: Drop a file on a cloud bucket

How do I check 100,000 hosts for badness?
● Step 2: Stand back

How do I check 100,000 hosts for badness?
● Step 3: Inspect the results

The Rekall Agent is released for comments
● This is an alpha release of the Rekall Agent.

○ We want to hear feedback about the design - I know its radical and very different from
existing solutions.

○ Please do not actually deploy this widely yet!

● What works now:
○ Linux support for both API and Memory.
○ Cloud based deployment for Google Cloud Storage.
○ Stand alone HTTP server for own server installs

● Planned for the final release (Real soon now):
○ End to End encryption - no plaintext in cloud.
○ More testing of Windows support.
○ Better packaging (deb, dpkg, msi)

● Contributions needed!
○ Also feature requests

Conclusions
● Rekall’s scope has expanded into the complete IR life cycle.

○ Acquisition and Analysis.
○ Memory and Live artifacts.

● We launch the Rekall Agent proof of concept.
○ A scalable and easy to deploy remote agent solution.

http://rekall-forensic.blogspot.com/2016/10/the-rekall-agent-whitepaper.html

http://www.rekall-forensic.com/

http://rekall-forensic.blogspot.com/2016/10/the-rekall-agent-whitepaper.html
http://rekall-forensic.blogspot.com/2016/10/the-rekall-agent-whitepaper.html
http://www.rekall-forensic.com/
http://www.rekall-forensic.com/

