OSDFCon 2017

RAPID INCIDENT RESPONSE

Asif Matadar @d1r4c

© 2017 Stroz Friedberg. All rights reserved.

STROZ FRIEDBERG

#whoami

- Director of Incident Response for Stroz Friedberg in the U.K.
- Lead complex incidents around the world:
 - Advanced Targeted Attacks
 - State Affiliated
 - Data Breaches
 - Industrial Espionage
- Over 6 years' experience working in incident response and penetration testing on infrastructure, web, and mobile applications.
- Presented at security conferences in the U.K. and the U.S.

Rapid Incident Response

- During large-scale incident response investigations we often come across situations where we undertake repetitive tasks so that includes Triage and Memory Analysis.
- This talk will walk-through different techniques that are required to provide these results for Windows and *nix environments and the importance of Triage and Memory Analysis during an investigation. How they are vital components that are often neglected during incident response investigations.

Rapid Incident Response

o Agenda

- Collaboration
- Live Triage Analysis
 - Windows environments
 - *nix environments
- Memory Analysis
 - Optimise Memory Analysis

Collaboration

© 2017 Stroz Friedberg. All rights reserved.

Collaboration

- Large-scale incident response investigations pose many obstacles:
 - Geographical limitations
 - Time zone issues
 - Which Investigator did what/when?
 - Contemporaneous Notes
 - Status of different work streams and sharing findings
 - Client or Management pressures
 - Lack of communication between personnel
- Operating multiple incidents STROZ FRIEDBERG

an Aon company

Collaboration – TheHive

- A collaborative tool called "TheHive" is a great platform that can aid Investigators:
 - You can start correlating findings in real time
 - Technical Leads can track pending tasks
 - Everyone can keep track of who is doing what
 - Create case templates
 - APT
 - Ransomware
 - Data breach
 - MISP can be fed into the platform or query other platforms like YETI, VirusTotal and DomainTools to name a few
 - TheHive4py Python API client to send alerts and emails for further action

7

Collaboration – TheHive

<DEMO>

https://github.com/CERT-BDF/TheHive

Collaboration – Timesketch

Timesketch is an open source tool for collaborative forensic timeline analysis.

- Create Timeline from JSON/CSV file
- Create Timeline from Plaso file
- Enable Plaso upload via HTTP
- Create Stories for correlation purposes
- Create comments on specific findings

Collaboration – Timesketch

<DEMO>

https://github.com/google/timesketch

Live Triage Analysis – Windows

© 2017 Stroz Friedberg. All rights reserved.

Live Triage Analysis

- Live Triage Analysis is an essential component during incident response investigations.
- Quickly triage many systems in an efficient manner whilst looking for any Indicators of Compromise (IOC) or Tactics, Techniques and Procedures (TTP).
- Once triage analysis has taken place, one can embark on full forensic analysis if there are signs of intrusions.

How will you deploy your tools?

o Can you utilise built-in Windows utilities to deploy your tools efficiently?

- Modern Windows environments now have the ability to facilitate quick deployment of tools on many systems.
 - This is great from incident response perspective!
- What options are available?

How will you deploy your tools?

PowerShell DSC (Desired State Configuration)

 PowerShell DSC is a management platform in PowerShell that enables you to manage your IT and development infrastructure with configuration as code.

SCCM (System Centre Configuration Manager)

 SCCM is a software management suite provided by Microsoft that allows users to manage a large number of Windows based computers which features remote control, patch management, operating system deployment, and network protection.

• **GPO**

 Group Policy is simply the easiest way to reach out and configure computer and user settings on networks based on Active Directory Domain Services (AD DS).

• PowerShell and WMI

Live Triage Analysis – Windows

- Secure environments have restrictions in place to prevent certain services from being enabled.
- Depending on the environment you are in, you can leverage a number of methods to commence Live Triage Analysis:
 - PowerShell
 - WinRM
 - WMI

an Aon company

STRO7 FRIEDBERG

Live Triage Analysis – CyLR

- The CyLR tool collects forensic artefacts from hosts with NTFS file systems quickly, securely and minimizes impact to the host.
 - Collected artefacts are stored in memory for optimisation
 - Windows API are not used for collecting the artefacts
 - Option to send triage data to server over SFTP tunnel for Host Analysis

Live Triage Analysis – CyLR

<DEMO>

https://github.com/rough007/CyLR

Other notable projects

 PSHunt is a PowerShell Threat Hunting Module designed to scan remote endpoints* for indicators of compromise or survey them for more comprehensive information related to state of those systems (active logs).

https://github.com/Infocyte/PSHunt

 Live Response Collection is an automated tool that collects volatile data from Windows, OSX, and *nix based operating systems.

https://www.brimorlabs.com/Tools/LiveResponseCollection-Bambiraptor.zip

Other notable projects

• Kansa is a modular incident response framework in PowerShell.

https://github.com/davehull/Kansa

• PowerForensics provides an all inclusive framework for hard drive forensic analysis.

https://github.com/Invoke-IR/PowerForensics

 PSRecon gathers data from a remote Windows host using PowerShell (v2 or later), organizes the data into folders, hashes all extracted data, sent to the security team for review.

https://github.com/gfoss/PSRecon

Agentless PowerShell project

 NOAH is an agentless open source Incident Response framework based on PowerShell, called "No Agent Hunting" (NOAH).

C:\> .\NOAH.ps1 -Processor -Memory -InstalledPrograms -Netstat -AMCache -Prefetch -EnableHash -HuntDescription "Triage Analysis - DESKTOP-3C0HA7E"

https://github.com/giMini/NOAH

WMI projects

 CimSweep is an ICIM/WMI-based tools that enables the ability to perform incident response and hunting operations remotely across all versions of Windows.

https://github.com/PowerShellMafia/CimSweep

Rapid Host Analysis – CDQR

- The Cold Disk Quick Response (CDQR) tool is a fast and easy to use forensic artefact parsing tool that works on disk images, mounted drives and extracted artefacts from Windows, Linux and macOS devices.
 - CyLR triage data can be utilised using CDQR
 - Plaso is used to parse disk images
 - Customised reports are created for Windows, Linux and macOS
 - Support for Timesketch and Kibana

https://github.com/rough007/CDQR

Rapid Host Analysis – CDQR

root@CCF_VM:/home/cdqr# cdqr.py DESKTOP-3C0HA7E.zip -p win --max_cpu --es_kb desktop-3C0HA7E CDQR Version: 4.0.1 Plaso Version: 1.5 Using parser: win Number of cpu cores to use: 4 Destination Folder: Results

DESKTOP-3C0HA7E.zip appears to be a zip file. Would you like CDQR to unzip it and process the contents? Attempting to extract source file: DESKTOP-3C0HA7E.zip All files extracted to folder: Results/artifacts/DESKTOP-3C0HA7E Source data: Results/artifacts/DESKTOP-3C0HA7E Log File: Results/DESKTOP-3C0HA7E.log Database File: Results/DESKTOP-3C0HA7E.db SuperTimeline CSV File: Results/DESKTOP-3C0HA7E.SuperTimeline.csv

Live Triage Analysis – *nix

© 2017 Stroz Friedberg. All rights reserved.

Live Triage Analysis – *nix

- Live Triage Analysis on *nix based systems is easier than most anticipate.
- SSH is the de-facto protocol to administer MAJORITY of *nix systems.
- On incident response investigations one can take advantage of SSH to triage systems rapidly.

*nix – SSH automation

Run local triage scripts on *nix systems through Python or BASH:

cat python_triage_script.py | ssh investigator@production.spock python -c
'"import sys;exec(sys.stdin.read())"'

cat python_triage_script.py | ssh investigator@development.spock python -

ssh investigator@cloud.spock "bash -s" < ./bash_triage_script.sh</pre>

*nix – SSH automation

 Python SSH module Paramiko is extremely useful for continuous monitoring of *nix based systems:

import paramiko
ssh=paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect('production.spock',username='investigator',password='<password_here>')
stdin,stdout,stderr = ssh.exec_command("ls -ltr/dev/shm/rootkit")
print stdout.readlines()

python python-paramiko_triage_script.py

lrwxrwxrwx 1 webadmin 10513 25 Sep 19 15:34 /dev/shm/rootkit

*nix – osquery

- osquery is an operating system instrumentation framework for Windows, OS X (macOS), Linux, and FreeBSD. The tool makes low-level operating system analytics and monitoring both performant and intuitive.
 - Queries can be fed into SIEM solution for analysis and collaboration
 - Integration with EDR products

*nix – osquery

<DEMO>

https://osquery.readthedocs.io/en/stable/

*nix – Other notable projects

 Live Response Collection is an automated tool that collects volatile data from Windows, OSX, and *nix based operating systems.

https://www.brimorlabs.com/Tools/LiveResponseCollection-Bambiraptor.zip

 MIG: Mozilla InvestiGator allows investigators to obtain information from large numbers of systems in parallel, thus accelerating investigation of incidents and day-to-day operations security.

https://github.com/mozilla/mig

Memory Analysis

© 2017 Stroz Friedberg. All rights reserved.

Memory Analysis

- Memory Analysis is a vital component during incident response investigations, especially when dealing with advanced threat actors.
- Extraction of artefacts can provide unique visibility into running systems.
- During large-scale incident response investigations Memory Analysis can provide a level of insight that is quite unique and unparalleled.

Optimise Memory Analysis

- Optimisation during Memory Analysis is important, especially when dealing with large amounts of memory dumps.
- A number of techniques can be used to undertake that work within Volatility:

cat volatilityrc
[DEFAULT]
LOCATION=file:///memdump.mem
PROFILE=Win7SP0x64
KDBG=0x80644be
DTB=0x00319000

Optimise Memory Analysis

Memory Analysis can be taken further if you utilise:

- SSD
- RAMDisk

mount -t tmpfs -o size=12g tmpfs/dev/shm

 Linux or macOS environments for optimum results when using Volatility

Optimise Memory Analysis

• BASH for loop

- BASH for loops are quite often used by Investigators during analysis but if you want results in a quick manner then it's not feasible and inefficient.
- Iterate one variable after another takes too long.

• Parallel GNU

- Executing jobs in parallel using one or more computers.
- Specify how many CPUs to use or the amount of jobs to run depending on CPU cores.
- **'pexec'** is another option that has similar capabilities to parallel GNU.
- **'xargs'** does support number of jobs but does not support how many CPU cores to run.

Optimise Memory Analysis Experiments

- Environment was running on ESXi Kali Virtual Machine:
 - 12GB RAM
 - 8 CPUs
 - Volatility version 2.6
- Experiments were conducted on:
 - SSD USBv3
 - RAMDisk
- Experiments ran 40 volatility plugins to quickly triage memory dumps for the relevant RAM sizes:
 - 1GB
 - 2GB
 - 4GB
- Compromised Windows 10 client:
 - Empire PowerShell Reverse Shell
 - PowerSploit Obfuscated Invoke-Mimikatz
 - PSReflect Registry Persistence

STROZ FRIEDBERG an Aon company

Optimise Memory Analysis Experiments

- Experiments were ran using 40 Volatility plugins to quickly triage memory dumps:
 - Processes and DLLs
 - Kernel Memory and Objects
 - Network sockets
 - Registry
 - Miscellaneous

STROZ FRIEDBERG an Aon company

Optimise Memory Analysis Experiments

• The following methods were used to undertake the analysis:

BASH for loop

for i in `cat volatility_forloop_list.txt`; do vol.py \$i > \$i.txt; done

Parallel GNU

parallel -a volatility_parallel_list.txt--use-cpus-instead-of-cores --colsep' ' vol.py
{pslist} {psscan} {netscan} {consoles} {...} {...} {...} {...}

Optimise Memory Analysis Results

STROZ FRIEDBERG an Aon company

Optimise Memory Analysis Observations

- Parallel GNU:
 - 30 minutes and 67 seconds on average when running on RAMDisk
- BASH for loop:
 - 120 minutes and 49 seconds on average when running on RAMDisk

 4 times faster to run parallel GNU compared to BASH for loop on RAMDisk or SSD

Imagine, if you had 10 or even 100 memory dumps???

Optimise Memory Analysis Observations

- Parallel GNU is highly effective when undertaking Memory Analysis of large amounts of memory dumps.
- Complementing RAMDisk with Parallel GNU can provide rapid results.
- Utilising Volatility Unified Output can be useful when ingesting data into a SIEM for collaboration:
 - JSON
 - sqlite
 - html
 - text

BUT

 Large memory dump sizes can be problematic if you have limited RAM resources when undergoing analysis on RAMDisk.

Conclusion

- Effective collaboration is vital during large-scale incident response investigations.
- Various methods can be used to Triage Windows environments depending on the environment you are in.
- Triaging *nix systems using a variety of techniques is possible.
- Optimising Memory Analysis is essential when dealing with large amounts of memory dumps.

Thank you!

 To all the project authors mentioned in this talk for making their tools FOSS!

???

STROZ FRIEDBERG an Aon company

https://uk.linkedin.com/in/asif-matadar

