
The story of Greendale
Turbinia: Automation of forensic processing in the cloud

Why are WE here?
Thomas Chopitea @tomchop_

Aaron Peterson @aarontpeterson

DFIR @ Google

● We write code, we use it to hunt bad guys

● dfTimewolf / Turbinia core devs

● Try to automate ourselves out of a job

Why are you here?
● You’ll learn about the Cloud part of our forensics toolkit

○ It’s all Free and Open Source Software

● You’ll see how these tools fit together through a fictional scenario

We’ll focus on:

● dfTimewolf
● Turbinia

● Plaso
● Timesketch

Log2timeline / plaso

● Recursively parses everything in your
filesystem and extracts timestamp
information

● Builds a system timeline from this
information

● Forensic timeline visualization tool ● Plays well with
plaso

● Multi-user,
multi-case,
multi-timeline

● CLI utility - the Glue between different tools

● Modules (e.g. collectors, processors, exporters)

● Recipes (directions on how to chain Modules)

Log2timeline / dfTimewolf

$ dftimewolf grr_artifact_hosts tomchop.greendale.edu 12345 --sketch_id 666

Recipe name Recipe parameters

Target GRR host Comment Existing sketch ID (optional)

tomchop.greendale.edu /tmp/C.123 /tmp/C.123.plaso

http://timesketch.greendale.edu/sketch/666
Timeline description: 12345

GRR Plaso Time
sketch

Log2timeline / dfTimewolf

contents = {
 'name': 'local_plaso',
 'short_description': _short_description,
 'modules': [{
 'name': 'FilesystemCollector',
 'args': {
 'paths': '@ paths',
 },
 }, {
 'name': 'LocalPlasoProcessor',
 'args': {
 'timezone': @ timezone,
 },
 }, {
 'name': 'TimesketchExporter',
 'args': {
 'endpoint': '@ ts_endpoint',
 'username': '@ ts_username',
 'password': '@ ts_password',
 'incident_id': '@ incident_id',
 'sketch_id': '@ sketch_id',
 }
 }]
}

● Open-source framework for deploying,
managing and running forensic workloads

● Automate common tools like Plaso,
bulk_extractor, strings, etc) in cloud
environments

● Parallel processing whenever possible

Turbinia

“Grab this piece of evidence, run
plaso on it, and dump results in a

cloud bucket”

● Written in Python

● PoC written in 2015 by @jberggren and @coryaltheide

● Rewritten starting in 2017

● We’re good at logos!

Other details

● Cloud
● Storage, processing, metadata 100% on GCP Cloud

● Hybrid
● Workers run on local machines with shared storage
● Only metadata is sent to the Cloud
● All processed data stays local

● Local
● No cloud dependencies
● Uses Celery / Kombu / Redis
● Contributed by Facebook (Eric Zinnikas, ericz.com)

Turbinia Installation Types

Installation Types Pros/Cons
Pros Cons

Cloud ● No infrastructure management ● Evidence may need to be uploaded

Hybrid

● Shifts costs

● No server management

● Data stays local
● Local machine management

Local
● No cloud dependencies

● Data stays local

● Local machine management

● Local service management (Celery,

Kombu, Redis)

● Evidence can be anything we want to process
○ E.g. RawDisk, GoogleCloudDisk, PlasoFile, etc

● Definitions in Python

● Tasks can generate new Evidence, which may be re-processed

● Evidence as seen by Client/Server is just metadata

● Actual data stored in shared storage or Google Cloud Storage

What is Evidence?

● Pre-processors make Evidence available to Tasks

○ Mounting images and attaching cloud disks, etc.

○ CloudPersistentDisk → RawDisk

● Post-processors clean-up

● Evidence can be “stacked”
○ GoogleCloudDiskRawEmbedded Evidence

○ Pre-processor for outer Cloud Disk attaches outer disk

○ Pre-processor for RawDisk mounts inner raw disk

Pre/Post-Processors

● Some Evidence types are “copyable”

○ PlasoFile, PlasoCSVFile, TextFile, etc

● Copyable Evidence can be automatically pulled from storage

○ Google Cloud Storage

○ Copyable generated Evidence can also be copied back

● Non-copyable Evidence requires shared storage

Output Manager

● Client sends processing request to server

● Server schedules Tasks from Jobs that can process that Evidence

● Workers from the pool run Tasks to process the Evidence
a. Tasks read Evidence from shared storage or copied from cloud storage

b. Task runner pre-processes the Evidence

c. Task does actual processing

d. Task generates new Evidence objects (e.g. RawDisk → PlasoFile)

e. Tasks return this new Evidence to the Server to be processed

A typical Turbinia workflow

Job Graph

Key
Jobs

Evidence

Turbinia analysis modules
Analysis modules make sense of forensic evidence.

● Look in logs for successful exploitation of
{Wordpress,Tomcat,Jenkins}.

● Highlight insecure {SSH,Redis,MongoDB} configuration files

● Python code in tasks holds the analysis logic.

● Extracts Artifacts and then analyzes them

● Simple execution tasks can be 10-15 lines of actual code

● Documentation at docs/developing-new-tasks.md

Creating New Tasks is Easy

https://github.com/google/turbinia/blob/master/docs/developing-new-tasks.md

● Orchestration happens externally

○ dfTimewolf

● Intentionally limited privs

● Push evidence instead of pull

Turbinia Scope

● Several new analysis tasks

● dfTimewolf integration published

● Python 3 support

● New Job manager

● Other clean-up and fixes: Task locking, Evidence and processor

refactoring, better Task error handling, libcloudforensics fixes, etc.

● Initial structure for terraform support

Turbinia Recent Updates

● Disk Volume Enumeration

● Encrypted disk support

● More Tasks in general (they’re easy to write!)

● Cloud bootstrapping automation

● Reporting

● Recipes

● Killing off Python 2

Turbinia Next Steps

Big Picture

● Hunting: GRR

● Gathering: dfTimewolf

● Processing: Turbinia
○ Via: Plaso, libyal, TSK, etc

● Analysis: Timesketch

Source: cyber-gtfo.club

The scenario
DISCLAIMER

None of what I’m about to talk about is true
(except for the demos)

The victim
Greendale Poly - the most famous fictitious university

Everyone’s on semester break when… someone gets a tip.

Suspicious domain reported by admin:

grendale.xyz

Greendale just migrated to the cloud...

● Typosquatting on grendale.xyz

● Looks targeted... Let’s look for related artifacts

● Let’s see what our cloud forensics options are...

Honing in on the initial tip...

DemO (dfTimeWolf gcp_forensics)

http://www.youtube.com/watch?v=VPCMVPDKDyM

DemO (Turbinia)

http://www.youtube.com/watch?v=3v9kwKDWzHM

Forensics in the cloud

dfTimewolf

greendale-student-{0..n}

Turbinia

plz copy disk(s)

disk ID
123-copy

plz forensicate
disk 123-copyGrab your

plaso file from
gs://123.plaso

Time
sketch

timeline.plaso

DemO (dfTimewolf with Turbinia)

http://www.youtube.com/watch?v=OxoEoPmHekc

Timesketch

A new host was compromised!
Netflow shows connections between the compromised GCP host and a
web server… running WordPress.

Let’s see if Turbinia’s Wordpress analysis module can help.

DemO (Turbinia analysis plugins, WP compromise)

http://www.youtube.com/watch?v=OifSsKM0Qw8

Disaster averted!
● Payload was a keylogger; no traces of lateral movement found.

○ Plus, Greendale uses 2FA tokens for all sensitive access

● Attacker’s objective was likely to disrupt the launch of Greendale’s
new PhD program in AC flow study.

What else can these tools do?
● GRR

○ Some host timelining, run custom Python scripts

● Plaso
○ Focus processing on specific user-selected artifacts

● dfTimewolf
○ Chain any system with an API into your workflow

● Timesketch
○ Histogram and heatmap view to view data differently, graphs

● Turbinia
○ Repetitive, parallelizable tasks

https://demo.timesketch.org/sketch/3/explore/view/226/
https://demo.timesketch.org/sketch/3/graphs/

Key takeaways
Tools that you might have a place in your ecosystem

Used daily by IR teams at Google

Contributions are encouraged

Apache 2 license

Where to find us
dfTimewolf

github.com/log2timeline/dftimewolf

Turbinia

github.com/google/turbinia

github.com/google/timesketch

Slack channel

https://open-source-dfir.slack.com

http://join-open-source-dfir-slack.herokuapp.com/

GRR

github.com/google/grr

Plaso

github.com/log2timeline/plaso

https://github.com/log2timeline/dftimewolf
https://github.com/google/turbinia
https://github.com/google/timesketch
https://open-source-dfir.slack.com
http://join-open-source-dfir-slack.herokuapp.com/
https://github.com/google/grr
https://github.com/log2timeline/plaso

The End!

