NDS]

1 9 0 9
\W

AFF and AFF4: Where We Are,

Where We are Going,
and Why it Matters to You

Simson L. Garfinkel
Associate Professor, Naval Postgraduate School

» 13:45
June 9, 2010
Sleuth Kit and Open Source Forensics Conference

NPS is the Navy’s Research University. NPS ,

DRAESTANTIA PER SCIENT 44, ’

Location: Monterey, CA Campus Size: 627 acres \\\V/

Students: 1500

= US Military (All 5 services)
= US Civilian (Scholarship for Service & SMART)
= Foreign Military (30 countries)

Schools:
» Business & Public Policy

» Engineering & Applied Sciences
= Operational & Information Sciences
» International Graduate Studies

We have programs for:
» US Government Employees
= Contractors
» Master's Students (Scholarship For Service)

“DEEP” — Current Research

AFF & Real Data Corpus
= http://afflib.org/
= http://digitalcorpora.org/

Automated metadata extraction and exploitation (XML & ARFF)

= fiwalk tool chain; redaction program;

Automated Ascription of Exploited Data

Sector Discrimination and Random Sampling

http://afflib.org
http://afflib.org

Goals of this talk

Present AFF history and Roadmap
= AFFLIB

] AFF4 [Schema Layer — structure of stored data }
Introduce Digital Forensics XML <fileobject>

= fiwalk

= fiwalk.py

Promote Tools that are available to download NOW!
= frag_find
= bulk extractor

AFFLIB v1-3

AFF was designed for large-scale

drive imaging and archiving
In 1998 | started the "Drives Project."

» Looking for data on used computer equipment.

Between 1998-2005 | purchased 250 drives:

» Serial number info captured with atacontrol

* Drives imaged with dd

» Images stored in raw format, eventually compressed with gzip
» Good enough for my 2005 PhD Thesis.

In 2005 | started "Phase 2" of the project.

» Goal: Increase corpora size to 2500 drives.
= Development of new forensic techniques for LE & IC

A

Question: How to store the disk images?

There were not many choices in 2005 for disk images.

EnCase Format
» Proprietary; no open source implementation. (libewf released in 2006)
» 2GB size limit created a management nightmare. (FILE.EO1, FILE.EO2, FILE.E03...)
* No provision for encryption or digital signatures.
— Encryption — needed for privacy, security, & IRB approval
— Digital Signatures — to enable capture by "trusted hardware."

Other proprietary formats:
= |Ximager and ILook Investigator
= ProDiscover Image File Format

» SafeBack
= VVogon International's SDi32

PyFlag "Seekable gzip"
» Open source, but not implemented anywhere except PyFlag.
= No obvious way to store metadata

We decided to create AFF —

the Advanced Forensic Format

Format Goals:
= Open Format — All bits clearly defined and documented.
= Excellent Compression
* One image file per physical disk
= Support Encryption
— Password-based private key
— Certificate-based public key

Implementation Goals
= Multi-platform: Windows, MacOS, Linux, FreeBSD, etc.
» Open Implementation — No licensing fees.
» Easy to instrument — enable research in computer forensics

AFF v1 has three distinct layers.

APl Layer — interface to analysis programs.

Bit-level layer — dictates how data is stored

API| Layer:
designed for easy integration into existing programs

APl Layer — interface to analysis programs.

Simple interface:

AFFILE *af = af open()
af_seek(af,pos,SEEK_SET);
af _read(af,buf,sizeof(buf));

af close(af)

10

AFF stores all data as name/value pairs

The "schema' is standardized names for forensic data.

sectorsize — Number of bytes per sector — 0x00000200 (512)

imagesize — Number of bytes in the logical image — 0x1000000000 (64GiB)
device sn — Serial number of the device — "WCAM9J939319"

device firmware — Drive capabilities

4)

Schema Layer — structure of stored data

")

Forensic data is stored in "pages"
» Page size is determined when image is created
= Default page: 16MiB
» Pages can be encrypted with: NULL, RAW, ZLIB, LZMA, etc.
» Each page has a name: "page0", "pagel", "page2" ...

11

The bit-level layer dictates how data is stored.

AFFLIB can store name/value pairs in different ways.

= AFF file DIPEEE0 paget | page2 | page3s |[sN|M
— Series of named segments, each with a HEAD; LENGTH; DATA; FOOT
— Easy to recover in the event of corruption, off-track writes, eftc.

= AFD file
— Multiple AFF files in a single directory

= AFF XML

= Amazon S3

= VMDK (via QEMU disk layer)

Bit-level layer — dictates how data is stored

AFFLIB also supports "legacy" formats:
» RAW, SPLIT RAW, EnCase EO1 (libewf)

12

A simple example: creating a 64K blank disk image

#include <afflib/afflib.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>

int main(int argc,char **argv)

{
u_char buf[65536];
memset (buf,0,sizeof (buf));
AFFILE *af = af open("file.aff",0 RDWR|O CREAT,0777);
af_write(af,buf,sizeof(buf));
af close(af);
return(0);
}
g++ -odemo -I/usr/local/include demo.cpp -lafflib
Creates:

$ 1s -1 file.aff
-rwxr-xr-x 1 simsong staff 820 May 31 08:20 file.aff*

13

The "afinfo" command shows the segemnts.

S afinfo -a file.aff
file.aff is a AFF file

data
Segment arg length data
badflag 0 512 BAD SECTOR....... U.8....}...W3
badsectors 2 8 = 0 (64-bit value)
afflib_version 0 7 "3.5.8"
creator 0 5 a.out
aff file type o) 3 AFF
pagesize 16777216 0)
pageO 51 4 ceoe
imagesize 2 8 = 65536 (64-bit value)

Total segments: (8 real)
Page segments:
Hash segments:
Signature segments:
Null segments:

Empty segments:

O O0OO0OO0OKr ®

Total data bytes in segments: 547

Total space in file dedicated to segment names: 73
Total overhead for 8 segments: 192 bytes (8*(16+8))
Overhead for AFF file header: 8 bytes

14

AFFLIB v3 added encryption & digital signatures

Encryption: each segment can be encrypted with a 256-bit AES key.

= AFFLIB automatically encrypts & decrypts each segment on read if possible.

Key can be specified as:

= passphrase that decrypts an afkey aes256 segment.
= X.509 certificate that decrypts a afkey evpO segment.

Passphrase can be specified two ways:

export AFFLIB PASSPHRASE='mypassphrase’
afinfo file://:mypassphrase@/filename.aff

Calling code is unchanged!

15

AFFLIB encryption example.

S export AFFLIB PASSPHRASE='password'
S ./demo

S afinfo file.aff

file.aff is a AFF file

file.aff: has encrypted segments

file.aff
data
Segment arg length data
badflag 0 512 BAD SECTOR. .2W. .:8¢ ¢+ A. ;...
badsectors 2 8 = 0 (64-bit value)
afflib version 0 7 "3.5.8"
creator 0 5 a.out
aff file type 0 3 AFF
pagesize 16777216 0
pageO 51 4 ceee
imagesize 2 8 = 65536 (64-bit value)

Bold indicates segments that were decrypted.
Total segments: (9 real)
Page segments:
Hash segments:
Signature segments:
Null segments:

O O O r LV

16

$ unset AFFLIB PASSPHRASE

S afinfo -a file.aff

file.aff is a AFF file

file.aff: has encrypted segments

Segment

badflag 0
badsectors 2
afflib version 0
creator 0
aff file type 0
affkey aes256 0
pagesize/aes256 16777216
pagel/aes256 51
imagesize/aes256 2

Total segments:
Encrypted segments:
Page segments:
Hash segments:
Signature segments:
Null segments:
Empty segments:

O O O O O W\

Total data bytes in segments: 631

Total space in file dedicated to segment names:

Without the passphrase, decryption

(9 real)

IS not possible.

data
BAD SECTOR. .2W. e8¢ e oo A. ;...+
= 0 (64-bit value)
"3.5.8"
a.out
AFF
........ _eees.4>.Nf..qg..N..d.
«c...dswS.K NL+....
+Y6..3f....... Neeoeoosoooe

107

17

AFFLIBv3 also adds digital signatures and parity pages.

Signatures are as signed SHA256 values.

» Each segment's SHA256 is calculated.
» SHA256 values are signed using OpenSSL's EVP_Sign functions.

Signatures can be stored:

= |In individual signature segments.
* In a new Bill Of Materials (BOM) segment.

page3 page3

bom1 bom1
bom?2

= Multiple sighatures can provide for chain-of-custody.
= afsign can also create a "parity page" for RAID-like reconstruction.

18

AFFLIBv3 status

AFFLIBv3 is in use today for research and education.
» |[ntegrated with SleuthKit.

AFFLIB tools - A set of utilities for manipulating disk images.

= afcat — outputs an AFF file to stdout as a raw file

= afcopy & afconvert — segment-by-segment copying and verification (optional encryption)
» afinfo — prints details about the segments

= afrecover & affix — recovery of data within a corrupted AFF file

= afsign — signature tool

= afverify — verifies signatures

= afcompare — compares two disk images

= afcrypto — encrypt or decrypt a disk image in place

= afdiskprint — generates an XML-based "diskprint" for fast image comparison.
= affuse — allows AFF images to be "mounted" as raw files on Linux.

= afsegemnt — view or modify an individual segment

19

AFFLIBv3: strengths and weaknesses

Strengths:
= Single archive for storing all of the data and metadata.
= Strong data integrity
= Compact archiving format (16MB segment size, optional LZMA)

Weaknesses:

» Performance.
— 16MB page size is problematic for some disk images due to MFT fragmentation.

— Caching is only solution at the present:
export AFFLIB CACHE PAGES=24 # Dedicates 24*16=384MB to cache
export AFFLIB CACHE_ PAGES=64 # Dedicates 64*16=1GB to cache

= Only one disk image per file
— Problem for lots of small devices
= No way to package "logical" files
—e.g. FILE.LO1

20

AFF4 is designed to overcome AFF3's limitations

AFF4 is a collaborative effort between:

» Michael Cohen (Australian Federal Police; PyFlag)
= Simson Garfinkel (NPS; AFF)
» Bradly Schatz (Director of Schatz Forensic)

Why AFF4?
= Overcome AFF3 performance limitations.

= Need to store more kinds of structured information inside the evidence file.
= Unified data model and naming scheme.

Changes from AFF3:

= AFF container is now a ZIP64 file.
= 16MB pages are replaced with two-level Chunk/Bevy model
= libaff4 library in C; most tools written in Python.

22

AFF4 concepts

Information model
= Abstract metadata — exists independent of the file's physical representation

Data model
= Concrete - How the information is represented on disk.

23

Information Model is based on RDF

Information is represented as statements about subjects.

» Statements have a subject, predicate and value:
aff4://1234 is_a “hard disk”
affda://1234 affd:size 1lE7

= Values can be encoded using specialized “data_types."

= Meanings are precise. (They are not just a freely interpreted string.)
affd://1234 aff4:acquired "2010-02-11T13:00:25+00:00"""xsd:dateTime

A group of statements is called a Graph

24

The Data Model is the physical manifestation of the

abstract information model.

Graphs are serialized using RDF serializations
= (e.g. Turtle, XMLRDF etc).

Basic types of AFF4 objects:
= Volumes — store segments within them. Segments are atomic (indivisible) blobs of data.

= Streams — Data objects which can be opened for reading or writing (e.g. segments,
images, maps)

» Graphs — Collections of RDF statements — can be written to volumes.

All AFF4 objects are universally referenced to through a unique URL.

Like AFF3, AFF4 objects can be stored in multiple containers.
* AFF4 calls these "Volumes."
= A Volume can be a ZIP64 file, a database, or a collection of files in a directory.

25

AFF4 ZIP Volumes are AFF4's default volume format.

Uses ZIP64 standard for large file support

= Can be opened by any tool that supports ZIP files...
= ... but data segments require special interpretation.

ZIP format is robust.
* There is a growing number of tools to recover corrupt ZIP files.

= Clear distinction between data content and data integrity.

ZIP format is malleable

» Can join / split volumes at any time
= Archive members have a universally unigue name — it does not matter where they are
stored.

We do not use ZIP64 encryption and signing.

= We implemented our own.

26

AFF4 Image Stream is used for storing seekable,

contiguous, compressed data.

Data model is similar to EnCase EO1:

» Data is split into chunks (32kb by default)
» Chunks are compressed and written into bevies back to back
— 2048 chunks per bevy by default

2048 chunks make a "bevy" >
(64MiB user data)

<

Information model
» Bevy indexes are stored in the aff4:index predicate
= Size is stored in aff4:size predicate
= Typically the information model will be stored in a graph within the volume.

27

Map streams are a collection of linear byte ranges from

other streams.

Every byte in the map stream is taken from an offset of some other
stream.

Conceptually maps are an array of points:
» Map offset, Target offset, Target name
= Offsets not in the array are interpolated

Maps are stored in the aff4:map predicate

= Can be encoded using a number of encoders for efficiency (e.g. inline, binary, text)

Map streams can be used for:
» Re-assembling RAID and LVM devices.
= |dentifying files within a disk image — useful for zero-copy carving.
» Hash-based imaging — don't stuff archive with objects already in the corpus.
= TCP/IP stream reassembly — Create a map stream from TCP payloads.

28

libaff4 — our implementation of the AFF4 format.

Designed to test ideas and evolve the format by using it.
» Flexible — can combine all types of AFF4 objects together
* Python bindings automatically generated from C source code.
— Easy to keep in sync with C library
—C library is very fast; Python bindings make development easy.
» Multithreaded
= Easy to use

Status:
= API still in flux
» Information on the ForensicsWiki at:
— http.//www.forensicswiki.org/wiki/AFF4
— http.//www.forensicswiki.org/wiki/LibAFF4
* Download LibAFF4 from:
— hg clone https.//aff4.googlecode.com/hg/ aff4

29

http://www.forensicswiki.org/wiki/AFF4
http://www.forensicswiki.org/wiki/AFF4
http://www.forensicswiki.org/wiki/LibAFF4
http://www.forensicswiki.org/wiki/LibAFF4
https://aff4.googlecode.com/hg/
https://aff4.googlecode.com/hg/

Digital Forensics XML

Digital Forensics XML (DFXML) is a tool for describing

file system and file metadata.

Today most forensic tools report metadata in human-readable form.

= Location of partitions.

» Location of a file.

= File owner, MAC times, etc.
» Microsoft Office permissions.

This leads to problems:

= Each tool processing a disk image must re-interpret the file system.
* One tool cannot be easily validated against another.

DFXML allows tools to interoperate.

31

Currently DFXML has four kinds of XML tags.

Per-Image tags

<fiwalk> — outer tag

<fiwalk version>0.4</fiwalk version>
<Start_time>Mon Oct 13 19:12:09 2008</Start_time>
<Imagefile>dosfs.dmg</Imagefile>

<volume offset="26112">

Per <volume> tags:

<volume offset=726112">
<Partition Offset>26112</Partition_Offset>
<block_size>512</block size>
<ftype>4</ftype>
<ftype str>fatl6</ftype str>
<block count>60749</block_count>

Per <fileobject> tags:

<fileobject>
<filename>DCIM/100CANON/IMG 0001.JPG</filename>
<filesize>855935</filesize>
<byte_ runs>

<run file offset='0' fs offset='55808' img offset='81920' len='855935'/>

</byte_runs>

</fileobject>

32

fiwalk is a tool that produces DFXML files.

fiwalk is a C++ program built on top of SleuthKit
S fiwalk [options] -X file.xml imagefile

Features:
* Finds all partitions & automatically processes each.
» Handles file systems on raw device (partition-less).
» Creates a single output file with forensic data data from all.

Single program has multiple output formats: XML ARFF Body

= XML (for automated processing)
= ARFF (for data mining with Weka)
» "walk" format (easy debugging)

» SleuthKit Body File (for legacy timeline tools)
» [CSV (for spreadsheets) ?]

33

fiwalk has a plugable metadata extraction system.

\Q /4 |£‘> #> Output
1 2 3

Configuration file specifies Metadata extractors:
= Currently the extractor is chosen by the file extension.

*.jpg dgi . ./plugins/jpeg extract
*,pdf dgi java -classpath plugins.jar Libextract plugin
*.doc dgi java -classpath ../plugins/plugins.jar word extract

» Plugins are run in a different process for safety.
» We have designed a native JVM interface which uses IPC and 1 process.

Metadata extractors produce name:value pairs on STDOUT

Manufacturer: SONY
Model: CYBERSHOT
Orientation: top - left

Extracted metadata is automatically incorporated into output.

<Manufacturer>SONY</Manufacturer>
<Model>CYBERSHOT</Model>

34

fiwalk's biggest challenge: UTF-8 filenames

Many filesystems allow invalid XML characters in filenames.
= Control Characters
» |Invalid Unicode characters (FF) and sequences (EF 32)
= "<"and ">"

SleuthKit returns UTF-8

» NTFS and HFS require valid Unicode in filenames
» Corrupted disks might not have valid Unicode.

Solution: Escaping for both XML and Unicode
= XML escaped — < > etc.
= Control characters are currently turned into "A" by Sleuthkit.
» DEL characters are quoted to \xFF
» Each character is tested for UTF-8; invalid characters escaped (e.g. \xEF \x32)
= "\" is escaped to \x5C

35

fiwalk.py: a Python module for automated forensics.

Key Features:
= Automatically runs fiwalk with correct options if given a disk image
» Reads XML file if present (faster than regenerating)
= Creates fileobject objects.

Multiple interfaces:

= SAX callback interface
fiwalk using sax(imagefile, xmlfile, flags, callback)

— Very fast and minimal memory footprint

= SAX procedural interface
objs = fileobjects using sax(imagefile, xmlfile, flags)

— Reasonably fast; returns a list of all file objects with XML in dictionary

» DOM procedural interface
(doc,objs) = fileobjects using dom(imagefile, xmlfile, flags)

— Allows modification of XML that’s returned.

36

The SAX and DOM interfaces both return fileobjects!

The Python fileobject class is an easy-to-use
abstract class for working with file system data.

Obijects belong to one of two subclasses:

fileobject sax(fileobject) — for the SAX interface
fileobject dom(fileobject) — for the DOM interface

Both classes support the same interface:
— fi.partition()
—fi.filename(), fi.ext()
—fi.filesize()
—fi.ctime(), fi.atime(), fi.crtime(), fi.mtime()
—fi.shai(), fimd5()
—fi.byteruns(), fi.fragments()
— fi.content()

37

Example: calculate average file size on a disk

Using DOM interface:

import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
print "average file size: ",sum([fi.filesize() for fi in objs]) / len(objs)

(For the Python-impaired:)

import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
sum of sizes = 0
for fi in objs:
sum of sizes += fi.filesize()
print "average file size: ",sum of sizes / len(objs)

38

Example: Find and print all the files 15 bytes in length.

Using DOM interface:

import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
for fi in filter(lambda x:x.filesize()==15, objs):
print fi

(For the Python-impaired:)

import fiwalk

objs = fileobjects using sax(imagefile, xmlfile, flags)
for fi in objs:
if fi.filesize()==15:
print fi

39

The fileobject class allows direct access to file data.

byteruns() is an array of “runs.”

<byte runs type='resident’>

<run file offset='0' len='65536"
fs offset='871588864' img offset='871621120'/>

<run file offset='65536' len='25920"
fs offset='871748608' img offset='871780864"'/>

</byte_runs>

Becomes:
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Each byterun object has:

run.start_sector () — Starting Sector #
run.sector_count ()

run.img_offset - Disk Image offset
run.fs _offset - File system offset
run.bytes - number of bytes
run.content () - content of file

40

The fileobject class allows direct access to file data.

byteruns() returns that array of “runs”
for both the DOM and SAX-based file objects.

>>> print fi.byteruns()
[byterun[offset=0; bytes=65536], byterun[offset=65536; bytes=25920]]

Accessor Methods:
= fi.contents_for_run(run) — Returns the bytes from the linked disk image
= fi.contents() — Returns all of the contents
= fi.file_present(imagefile=None) — Validates MD5/SHA1 to see if image has file
* fi.tempfile(calMD5,calcSHA1) — Creates a tempfile, optionally calculating hash

41

We have several small applications with this framework.

iblkfind.py

= given a disk block in an image, say which files map there.

icarvingtruth.py

» Reports location of carvable files given an earlier XML "map" of the disk image.

idifference.py
= Forensic Disk Differencing

iverify.py

* Reads an image file and XML file; reports which files are actually resident.

imicrosoft_redact.py
= "breaks" a Windows boot disk so that it can be distributed.

42

iblkfind.py shows how simple it is to build an application.

#!/usr/bin/python

import sys,fiwalk

if name == main :

from optparse import OptionParser

parser = OptionParser ()

parser.usage = '$prog [options] image.iso sl [s2 s3 s3 ...]'
(options,args) = parser.parse_args()

if len(args)<l:
parser.print help()
sys.exit (1)

sectors = set([int(n) for n in args[l:]])
def process(fi):
for s in sectors:
if fi.has sector(s):

print "%d\t%s" % (s,fi.filename())

fiwalk.fiwalk using sax(imagefile=open(args[0]),callback=process)

43

frag_find performs hash-based file carving

Input: 123|456
= 1 or more Master Files
B1|B2|B3
= Adisk image
1/12[3|4|5]|6
Output:
= Digital Forensics XML of where the files are.
<fileobject>
B1
<byte_run>
- B2
</byte_run>
</fileobject> B3
<fileobject>

<byte_run>

</byte_run>
</fileobject>

Uses: EXxfiltration of sensitive documents; Digital Loss Detection; etc.

44

bulk _extractor
(sneak preview)

bulk_extractor is a high-speed Named Entity Carver

Input: disk images, memory dumps, network packets, etc.
* No file system interpertation

Output: recognized "Named Entities"
* email addresses
= Credit Card Numbers
= TCP connections
= Parsed URLs (search terms, services, etc.)

Histogram analysis:
= Shows what's important to the subject.

Multi-threaded:

» Turns any CPU-bound task into an I/O-bound task (if you have enough cores)
= Carves a 270GB disk image in 30 minutes.

46

bulk_extractor sample output:

nps-2009-domexusers/email.txt and email_histogram.txt

email feature file:

23401051 St@atus.eU
24900678 grafta@bl.com
26735686 grafta@bl.com
32597062 grafta@bl.com
34427974 grafta@bl.com
39265456 domexuser2@gmail .com
39267100 domexuser2@live.com
39269992 domexuserl@gmail .com
39270105 domexuserl@gmail.com
40893040 domexuser2@live.com
40948912 domexuser2@gmail .com
40950441 domexuser2@live.com
42562736 domexuser2@gmail .com
Histogram:
n=546 domexuserl@gmail.com
n=386 domexuser2@gmail .com
n=331 domexuser3@gmail.com
n=166 domexuser2@live.com
n=140 domexuser2@hotmail .com
n=138 domexuserl@hotmail.com
n=121 domexuserl@live.com
n=94 premium-server@thawte.com
n=57 inet@microsoft.com
n=46 someone@example.com

47

mailto:St@atus.eU
mailto:St@atus.eU
mailto:grafta@bl.com
mailto:grafta@bl.com
mailto:grafta@bl.com
mailto:grafta@bl.com
mailto:grafta@bl.com
mailto:grafta@bl.com
mailto:grafta@bl.com
mailto:grafta@bl.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@hotmail.com
mailto:domexuser2@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:inet@microsoft.com
mailto:inet@microsoft.com
mailto:someone@example.com
mailto:someone@example.com
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org
http://digitalcorpora.org

In summary:

This talk presented open source tools that you can use.

AFF history and Roadmap

» AFFLIB
 AFF4

API Layer — interface to analysis programs.

[Schema Layer — structure of stored data }

Bit-level layer — dictates how data is stored

Digital Forensics XML <fileobject>

= fiwalk
= fiwalk.py

Promote Tools that are available to download NOW!
= frag_find
= bulk extractor

48

