
Constructing a Stable and 
Verifiable Computer Forensic 

System 

Daniel Ayers 
Elementary Solutions Ltd 
Auckland, New Zealand 

 
Open Source Digital Forensics Conference 2011 



 This talk is about validation of computer forensic 
software 

 Difficulties validating and using computer forensic tools 
on general purpose operating systems 

 What can we do with open source software, including 
TSK & Linux, to help? 

 

Introduction 



 Tool – Computer forensic software executing within a 
general purpose operating system 

 Positive Validation – Ability to extrapolate from 
successful test(s) that tool is correct. 

 Negative Validation – Ability to demonstrate through 
unsuccessful test(s) that tool is incorrect. 

Definitions 



 Hypothesis – Change in OS environment can cause a 
correct tool to give incorrect results 

 Tested – EnCase v6.18 & Linux (Debian Lenny) 

 Results 

 Modification of OS TZ database broke date/time 
calculations (EnCase & Linux, EnCase broken anyway) 

 Modification of OS codepage/NLS definitions broke 
keyword searching (EnCase, Linux inconclusive) 

An Experiment 



Tool in a General Purpose OS 

Hardware 

Firmware 

Operating System 

Libraries Config 

TOOL 
“Correct” tool provided by 
vendor 

Relies upon proper 
operation of operating 
system, firmware and 
hardware 



 Generic positive validation of a tool (“Tool X v1.4 works 
correctly”) is not possible 

 A successful validation test means tool works on that 
particular computer or one with the same characteristics 
(equivalence) 

 Faults can originate from 
 OS patches (e.g. US DST patch for Windows) 

 Misconfiguration 

 Security compromise (anti-forensics) 

 Changes in date and/or time 

 

Conclusions from Experiment 



 Computer Forensic System – Tool plus all hardware 
and software capable of influencing the behaviour of 
the tool. 

 

 How can you ascertain the scope of a system? 

 Includes specific hardware & software 

 Examine source code (for open source tools) 

 strace/ptrace/Process Monitor (closed source)? 

Computer Forensic System 



 The terms of the software license for most closed 
source tools prohibit reverse engineering and similar 
activities 

 It may not be legal to examine the tool in sufficient 
detail to identify what OS services, libraries and 
configuration data it relies on 

 A dead end for closed source? 

But … License Restrictions! 



 A “forensic appliance” 

 Based upon general purpose OS & open source software 

 Automatic updates disabled 

 Configuration control software (e.g. Puppet) 

 Integrity verification software (e.g. Tripwire) 

 Verification of hardware & firmware using diagnostics & burn-
in software 

 Access evidence data via Lustre, NFS, CIFS or web services. 

 Clusters comprised of many appliances 

Constructing a Stable and Verifiable 
System using Linux, TSK, etc 



Appliance Life Cycle 

BUILD TEST OPERATE 

BUILD TEST OPERATE 

Freeze 
Configuration 

Verify Integrity 

Version 1 

Version 2 



 Need to establish reliable operation of hardware and 
firmware 

 Vendor diagnostic software 

 Burn-in software 

 Memtest86+ 

 IPMI/Hardware monitoring for early detection of 
problems 

 Verify disk operation – prefer hardware RAID 

Hardware Qualification 



 Select stable software (ad-hoc updates not possible) 

 Minimal software install 

 Automated configuration management (e.g. Puppet 
“ensure => version”) 

 Freeze Configuration 

 Disable automated updates (lock file, null sources.lst) 

 Install & configure tripwire 

Build Phase 



 Conduct sufficient testing to support positive 
validation of all components of system 

 Tests should compare output of software on system 
with known correct results 

 Keep detailed records of tests and results (may be 
required as evidence) 

Test Phase 



 Monitor integrity of system (e.g. via tripwire and 
IPMI/BMC/iLO/etc) 

 Occasional repetition of test suite (e.g. when the 
appliance is not required) 

 Maintain logs of which data is processed by what 
appliance 

 Beware of security vulnerabilities – the only way to 
apply patches is to restart the build, test, operate 
cycle! 

 

Operational Phase 



 Want maximum “operate” for minimum “build + 
test” 

 Key is to prove an appliance is equivalent to one that 
was positively validated 

 Identical hardware – qualify each unit, but build & test 
only once then mass deploy? 

Optimisation 



 Generic validation of a tool is not possible as behaviour 
depends on OS correctness & configuration 

 Validation tests must take into account all software & 
hardware factors that may influence outcome 

 Necessary to obtain maximum “operation” time for 
minimum “build+test” 

 Construction of “forensic appliances” using open source 
software is a convenient way to achieve this goal 

 

Conclusion 


