File System Archaeology

New techniques to help recover data
from a FAT32 file system



Talk

Data recovery

New? Techniques
— Reconstruct file system activity

FAT32

— Simple example
Fragmented files
Verification

Exercise



Data Recovery

 Two main approaches
— Use metadata
— File carving

* Both approaches have problems with
fragmentation



Data Recovery 2

* File Carving

— Continually improving
* New ideas to handle fragmented files

e But...

— Slow
— Doesn’t get metadata

* File names, dates, length



New Techniques

* Use metadata to reconstruct file activity
— Can reconstruct how files are laid out on disk
— Can handle fragmentation
— Don’t need to read every cluster

* Very efficient

* Can be used to supplement file carving
techniques



New Techniques 2

* File validation strategies which don’t look at
the file contents

* Reconstruction of FS data structures

e Knitting together fragmented directory
clusters



What?
Did you say FAT?
You mean that 30
vear old file system.



FAT 32

e Portable and so used on
— Phones

— Cameras
— USB keys



More cell phones than people

In 30 countries around the world, from Aruba to Italy to Hong Kong, mobile phone
penetration has past 100 percent. Translation: the number of cell phone
subscriptions has exceeded the size of the population. That's according to end-
of-Q1-2006 data just released by London-based researcher Informa
Telecom&Media. Here is the list:

Turks & Caicos Islands: 161.8%
Aruba: 150.8
Luxembourg: 140.7
Lithuania: 139.9
Cayman Islands: 136 .4
Netherlands Antilles: 134.0
Grenada: 133.3

Israel: 125.9

ltaly: 122.4

Cyprus: 121.5

Macau: 121.3

Bahrain: 117.8
Greece: 114.7

Czech Republic: 114.0
UAE: 1139

Jersey: 113.6
Sweden: 112.5

Hong Kong: 110.8

UK: 110.1

Estonia: 108.6

Spain: 108.0

Austria: 107.3




FAT32 intro

File system partition



FAT32 intro

Reserved
Area

FAT1

FAT2 Data Area

Root
directory

Formatting the disk initialises the data structures,
creates a FAT and backup FAT and




FAT32 intro

Reserved

FAT1 FAT2
Area

Data Area

Root
directory

For the purposes of this talk, we
are not interested in anything
other than the data area




FAT32 intro

Reserved

Area Data Area

Root
directory

For the purposes of this talk, we
are not interested in anything
other than the data area



FAT32 intro

Root
directory

Data Area

For the purposes of this talk, we
are not interested in anything
other than the data area




FAT32 intro

Root
directory

Data Area

The Data area is where all the file

data and the directory information
is held.




FAT32 intro

Root
directory

* Divided into clusters. (Say 4k, or 4096 bytes)
* Files are stored as a sequence of clusters
e Sequence information stored in the FAT




FAT32 intro

Root
directory

e Sequence information stored in the FAT




FAT32 intro

Root
directory

e Sequence information stored in the FAT
* QOops .. we've lost the FAT
=> we have to reconstruct the sequence




FAT32 intro

Root

directory

Creating a file
* Create an entry in the directory




FAT32 Typical Operations

Root
directory

* Creating a file (say 6k, requires 2 clusters)




FAT32 Typical Operations

* Creating a file (say 6k, requires 2 clusters)
* Create an entry in the directory
 Holds metadata name, dates, start, len




FAT32 Typical Operations

FILEL.T

XT

* Creating a file (say 6k, requires 2 clusters)
Create an entry in the directory

Holds metadata name, dates, start, len

Allocate clusters




FAT32 Typical Operations

FILEL.TXT

* Creating a subdirectory
* Create an entry in the root directory




FAT32 Typical Operations

FILEL.TXT

SUBDIR

* Creating a subdirectory
* Create an entry in the root directory
* Allocate cluster




FAT32 Typical Operations

SUBDIR

FILEL.TXT I

* Creating a subdirectory
* Create an entry in the root directory
* Allocate cluster
* Create.and .. entries



FAT32 Typical Operations

()

SUBDIR

FILEL.TXT I

 The. entry points to itself



FAT32 Typical Operations

()

FILEL.TXT

SUBDIR

 The. entry points to itself
 The .. entry points to the parent directory (in
this case, the root directory)



FAT32 Typical Operations

()

SUBDIR

FILEL.TXT I

* Note that the . entry contains the same
values as the subdirectory entry except for
the name. Redundancy is good for forensics.



Allocation Strategy

* The file system needs to allocate clusters
— it is free to choose any free cluster

— FAT32 supports next available
* the next available cluster after the last one allocated



Allocation Strategy

SUBDIR

A new file (3 clusters) is created in SUBDIR



Allocation Strategy

FILEL.TXT
SUBDIR

A new file (3 clusters) is created in subdir
e FILE1.TXT is edited, reduced to 1 cluster



Allocation Strategy

SUBDIR

—————
FILEL.TXT

A new file (3 clusters) is created in subdir
e FILE1.TXT is edited, reduced to 1 cluster
 FILE3.TXT is created in the root directory



Allocation Strategy

FILEL.TXT
SUBDIR

A new file (3 clusters) is created in subdir
e FILE1.TXT is edited, reduced to 1 cluster
 FILE3.TXT is created in the root directory



Allocation Strategy

FILEL.TXT

SUBDIR

A new file (3 clusters) is created in subdir

LE].]
LE3.]

LE2.]

"XT is edited, reduced to 1 cluster
"XT is created in the root directory

XT is reduced in size to 1 cluster



Allocation Strategy

FILEL.TXT

SUBDIR

A new file (3 clusters) is created in subdir

LE].]
LE3.]

LE2.]

"XT is edited, reduced to 1 cluster
"XT is created in the root directory

XT is reduced in size to 1 cluster




Allocation Strategy

FILEL.TXT

A new file (3 clusters) is created in subdir

LE].]
LE3.]
LE2.]

LE4.]

"XT is edited, reduced to 1 cluster
"XT is created in the root directory
XT is reduced in size to 1 cluster

"XT (3 clusters) is created



FILEL.TXT

Allocation Strategy

A new file (3 clusters) is created in subdir

LE].]
LE3.]
LE2.]

LE4.]

"XT is edited, reduced to 1 cluster
"XT is created in the root directory
XT is reduced in size to 1 cluster

"XT (3 clusters) is created




Allocation Strategy

FILEL.TXT

A new file (3 clusters) is created in subdir
CILEL1.TXT is edited, reduced to 1 cluster
-ILE3.TXT is created in the root directory
-ILE2.TXT is reduced in size to 1 cluster
-ILE4.TXT (3 clusters) is created




Allocation Strategy

* FILE4.TXT is quite fragmented



Allocation Strategy

 FILE4ATXT is quite fragmented ...
* but..



Allocation Strategy

* FILE4.TXT is quite fragmented ...

* but...
* if we know the sequence of operations and

the allocation strategy, we can find out
which clusters the files were allocated.



Data Recovery

* Find all the directory entries (assume they all
still exist ... only the FATs have been destroyed)

* Sort entries by creation time

e for each entry
— use the start cluster and number of clusters to see
where it would go.
— when we come to FILE4A.TXT it has only one place
to go.



Problems

* Defragmentation

— Let’s assume it doesn’t happen
* Deleted files

— We don’t have the time they were deleted

e Deleted directories

— Maybe overwritten and we lose many directory
entries.



Problems 2

e Modification time

— There’s only one and a file may be modified many
times

— It’s accurate to 2 seconds (creation time to 10ms)

— A file may be modified and still occupy the same
number of clusters

* the last modification time is an upper bound



File Fragmentation

When a file is increased in size



Let’s go back in time

SUBDIR

 FILEL1.TXT is increased by one cluster



Let’s go back in time

SUBDIR

 FILEL1.TXT is increased by one cluster



Let’s go back in time

SUBDIR

 FILEL1.TXT is increased by one cluster
e FILES5.TXT (1 cluster is created)



Let’s go back in time

FILEL.TXT

 FILEL1.TXT is increased by one cluster
e FILES5.TXT (1 cluster is created)
 And it is obvious where FILEL.TXT ends up.



If only there was a way to detect
the end of a file

* This would help



Techniques

 Technique Number 1

— Recover file system activity and use in conjunction
with a known allocation strategy to recover file
cluster layout.



Techniques

Technique Number 2

— We can use the redundancy of the . and ..
directory entries to reliably determine cluster size
and the start of the data area.

— How?

— we have two measures of distance. We know the
byte offset where the . entry occurred and the
parent entry. We also know the cluster number of
each of these.

— just divide the length by the length in clusters



Detecting the end of a file

e RAM slack

— Data written to the disk is always written in blocks
of 512.

— If a file of 1 byte is being created, just contains a
single ?’
* 512 bytes of memory is allocated
* The first byte is set to the 7’
* Remaining bytes are set to zero

* |dea of an ex-student (Anthony Walters)



Detecting end of file

* From the directory entry we know the length
of the file

— so we know how many bytes are in the last cluster
— Let’s say there are 1000 bytes in the last cluster

* The cluster is, say 4K, that is 8 sectors in size




Detecting end of file

‘ 1000 bytes

 We know that we are 1000 bytes into the last
cluster

— that is into the second sector
— the end of that sector will contain zeros



Detecting end of file

‘ 1000 bytes

 We know that we are 1000 bytes into the last
cluster

— that is into the second sector
— the end of that sector will contain zeros



Detecting end of file

‘ 1000 bytes

* So, we search for a cluster which has a second
sector which contains the end of the file and
24 zeros




Problems

e Microsoft Common Document Format (CDF)

files seem to occupy a whole number of
sectors and so this technique won’t work with

them.
 We get most confidence if the file ends with a
non zero value.



Techniques

* Technique 1

— Recover file system activity to identify file cluster
layout.

* Technique 2

— Reliably determine cluster size and the data area.

* Technique 3

— Identify the end of files which do not occupy a
whole number of sectors



Joining Directory Clusters

* A 4k cluster has room for 32 directory entries.

* A file usually requires more than 1 entry, in
fact, tests show that typically a file requires
3.4 entries and so one cluster can hold 9 of
these typical files.

* When a file is created and there isn’t enough
room in the directory a new cluster is added.



Long FileName entries

Every file needs a base directory entry

When a file is created which requires a long
file name, then special entries are created
(Long FileName or LFN entries).

Tests show that 2.4 LFN entries are required
for every file. Add the base directory entry to
get 3.4

The LFN entries have a checksum to tie them
to the base directory entry.



Joining Directory Clusters

* The file directory entries may straddle a
cluster.

— We can then use the checksum to join the clusters
together.

 We can also use common parent entries

* Failing that, we can use the file times in the
directory to match



4 Techniques

Technique 1

— Recover file activity to identify file cluster layout.

Technique 2

— Reliably determine cluster size and the data area.

Technique 3
— Identify the end of files

Technique 4
— Joining up directory clusters



In Practice



Most files are not fragmented

* Simson Garfinkel used his huge corpus to
determine that only 6% of files were
fragmented. (http://simson.net/clips/academic/2007.DFRWS.pdf)

* We can quickly run through these and validate
them and remove that part of the disk from
further consideration

— spend more time on the fragmented files.


http://simson.net/clips/academic/2007.DFRWS.pdf

Tying it all together



An Actual Example

4G FAT32 Flash key
Originally formatted using XP
% filled with files

— backed up, so mostly created

Then formatted with OS X
— same cluster size, but different data area

A small number of file created occupying
about 0.1% of the disk



Recovery

 \We consider a block of files to be a set of files
which are laid out sequentially

— we can have more confidence that these files are
not fragmented
 We recovered 2856 files occupying 1.6 GB
bytes. The system found 65 file blocks with an

average size of 61 files in a block. The largest
block contained 424 files.

* Only the directories were fragmented



Efficiency

e This approach could be made very efficient. If
you can verify a file by examining the last
cluster, then you don’t need to examine every
cluster on the disk.

* Every unfragmented file is an opportunity to
avoid examining its clusters.



Exercise



Let’s go back in time

FILEL.T

XT

FILEL.TXT is increased by one cluster
FILES.TXT (1 cluster is created)




Let’s go back in time

FILEL.TXT

SUBDIR

F
F
F

LE1.TXT is increased by one cluster
LE5.TXT (1 cluster is created)
E2 is deleted

When we look only at directory entries can we
be sure that FILE1.TXT occupies those clusters



This?

SUBDIR

Or this?




Code

* Codeis at
nttp://code.google.com/p/comebackfat/

* |tis exploratory

e |tis not efficient


http://code.google.com/p/comebackfat/
http://code.google.com/p/comebackfat/

Thank You



