
File System Archaeology

New techniques to help recover data
from a FAT32 file system

Talk

• Data recovery

• New? Techniques
– Reconstruct file system activity

• FAT32
– Simple example

• Fragmented files

• Verification

• Exercise

Data Recovery

• Two main approaches

– Use metadata

– File carving

• Both approaches have problems with
fragmentation

Data Recovery 2

• File Carving

– Continually improving

• New ideas to handle fragmented files

• But …

– Slow

– Doesn’t get metadata

• File names, dates, length

New Techniques

• Use metadata to reconstruct file activity

– Can reconstruct how files are laid out on disk

– Can handle fragmentation

– Don’t need to read every cluster

• Very efficient

• Can be used to supplement file carving
techniques

New Techniques 2

• File validation strategies which don’t look at
the file contents

• Reconstruction of FS data structures

• Knitting together fragmented directory
clusters

What?
Did you say FAT?
You mean that 30

year old file system.

FAT 32

• Portable and so used on

– Phones

– Cameras

– USB keys

FAT32 intro

File system partition

FAT32 intro

Reserved
Area

FAT1 FAT2 Data Area

Formatting the disk initialises the data structures,
creates a FAT and backup FAT and

R
o

o
t

d
ir

ec
to

ry

FAT32 intro

Reserved
Area

FAT1 FAT2 Data Area

R
o

o
t

d
ir

ec
to

ry

For the purposes of this talk, we
are not interested in anything

other than the data area

FAT32 intro

Reserved
Area

FAT1 FAT2 Data Area

R
o

o
t

d
ir

ec
to

ry

For the purposes of this talk, we
are not interested in anything

other than the data area

FAT32 intro

Data Area

R
o

o
t

d
ir

ec
to

ry

For the purposes of this talk, we
are not interested in anything

other than the data area

FAT32 intro

Data Area

R
o

o
t

d
ir

ec
to

ry

The Data area is where all the file
data and the directory information

is held.

FAT32 intro

• Divided into clusters. (Say 4k, or 4096 bytes)
• Files are stored as a sequence of clusters
• Sequence information stored in the FAT

R
o

o
t

d
ir

ec
to

ry

FAT32 intro

• Divided into clusters. (Say 4k, or 4096 bytes)
• Files are stored as a sequence of clusters
• Sequence information stored in the FAT

R
o

o
t

d
ir

ec
to

ry

FAT32 intro

• Divided into clusters. (Say 4k, or 4096 bytes)
• Files are stored as a sequence of clusters
• Sequence information stored in the FAT

• Oops … we’ve lost the FAT
=> we have to reconstruct the sequence

R
o

o
t

d
ir

ec
to

ry

FAT32 intro

• Creating a file
• Create an entry in the directory

R
o

o
t

d
ir

ec
to

ry

FAT32 Typical Operations

• Creating a file (say 6k, requires 2 clusters)

R
o

o
t

d
ir

ec
to

ry

FAT32 Typical Operations

• Creating a file (say 6k, requires 2 clusters)
• Create an entry in the directory

• Holds metadata name, dates, start, len

FAT32 Typical Operations

• Creating a file (say 6k, requires 2 clusters)
• Create an entry in the directory

• Holds metadata name, dates, start, len
• Allocate clusters

FILE1.TXT

FAT32 Typical Operations

• Creating a subdirectory
• Create an entry in the root directory

FILE1.TXT

FAT32 Typical Operations

• Creating a subdirectory
• Create an entry in the root directory
• Allocate cluster

FILE1.TXT

SU
B

D
IR

FAT32 Typical Operations

• Creating a subdirectory
• Create an entry in the root directory
• Allocate cluster
• Create . and .. entries

FILE1.TXT

SU
B

D
IR

FAT32 Typical Operations

• The . entry points to itself

FILE1.TXT

SU
B

D
IR

FAT32 Typical Operations

• The . entry points to itself
• The .. entry points to the parent directory (in

this case, the root directory)

FILE1.TXT

SU
B

D
IR

FAT32 Typical Operations

• Note that the . entry contains the same

values as the subdirectory entry except for
the name. Redundancy is good for forensics.

FILE1.TXT

SU
B

D
IR

Allocation Strategy

• The file system needs to allocate clusters

– it is free to choose any free cluster

– FAT32 supports next available

• the next available cluster after the last one allocated

Allocation Strategy

• A new file (3 clusters) is created in SUBDIR

FILE1.TXT

SU
B

D
IR

FILE2.TXT

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster
• FILE3.TXT is created in the root directory

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster
• FILE3.TXT is created in the root directory

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT FILE2.TXT

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster
• FILE3.TXT is created in the root directory
• FILE2.TXT is reduced in size to 1 cluster

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT FILE2.TXT

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster
• FILE3.TXT is created in the root directory
• FILE2.TXT is reduced in size to 1 cluster

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster
• FILE3.TXT is created in the root directory
• FILE2.TXT is reduced in size to 1 cluster
• FILE4.TXT (3 clusters) is created

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT
1

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster
• FILE3.TXT is created in the root directory
• FILE2.TXT is reduced in size to 1 cluster
• FILE4.TXT (3 clusters) is created

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT
1 2

Allocation Strategy

• A new file (3 clusters) is created in subdir
• FILE1.TXT is edited, reduced to 1 cluster
• FILE3.TXT is created in the root directory
• FILE2.TXT is reduced in size to 1 cluster
• FILE4.TXT (3 clusters) is created

FI
LE

1
.T

X
T

SU
B

D
IR

FILE2.TXT
1 3 2

Allocation Strategy

• FILE4.TXT is quite fragmented

1 3 2

Allocation Strategy

• FILE4.TXT is quite fragmented …
• but …

1 3 2

Allocation Strategy

• FILE4.TXT is quite fragmented …
• but …
• if we know the sequence of operations and

the allocation strategy, we can find out
which clusters the files were allocated.

1 3 2

Data Recovery

• Find all the directory entries (assume they all
still exist … only the FATs have been destroyed)

• Sort entries by creation time

• for each entry

– use the start cluster and number of clusters to see
where it would go.

– when we come to FILE4.TXT it has only one place
to go.

Problems

• Defragmentation

– Let’s assume it doesn’t happen

• Deleted files

– We don’t have the time they were deleted

• Deleted directories

– Maybe overwritten and we lose many directory
entries.

Problems 2

• Modification time

– There’s only one and a file may be modified many
times

– It’s accurate to 2 seconds (creation time to 10ms)

– A file may be modified and still occupy the same
number of clusters

• the last modification time is an upper bound

File Fragmentation

When a file is increased in size

Let’s go back in time

• FILE1.TXT is increased by one cluster

FILE1.TXT

SU
B

D
IR

FILE2.TXT

Let’s go back in time

• FILE1.TXT is increased by one cluster

FILE1.TXT

SU
B

D
IR

FILE2.TXT

Let’s go back in time

• FILE1.TXT is increased by one cluster
• FILE5.TXT (1 cluster is created)

FILE1.TXT

SU
B

D
IR

FILE2.TXT

Let’s go back in time

• FILE1.TXT is increased by one cluster
• FILE5.TXT (1 cluster is created)
• And it is obvious where FILE1.TXT ends up.

FILE1.TXT

SU
B

D
IR

FILE2.TXT

If only there was a way to detect
the end of a file

• This would help

Techniques

• Technique Number 1

– Recover file system activity and use in conjunction
with a known allocation strategy to recover file
cluster layout.

Techniques

• Technique Number 2
– We can use the redundancy of the . and ..

directory entries to reliably determine cluster size
and the start of the data area.

– How?

– we have two measures of distance. We know the
byte offset where the . entry occurred and the
parent entry. We also know the cluster number of
each of these.

– just divide the length by the length in clusters

Detecting the end of a file

• RAM slack

– Data written to the disk is always written in blocks
of 512.

– If a file of 1 byte is being created, just contains a
single ‘?’

• 512 bytes of memory is allocated

• The first byte is set to the ‘?’

• Remaining bytes are set to zero

• Idea of an ex-student (Anthony Walters)

Detecting end of file

• From the directory entry we know the length
of the file

– so we know how many bytes are in the last cluster

– Let’s say there are 1000 bytes in the last cluster

• The cluster is, say 4K, that is 8 sectors in size

Detecting end of file

• We know that we are 1000 bytes into the last
cluster

– that is into the second sector

– the end of that sector will contain zeros

1000 bytes

Detecting end of file

• We know that we are 1000 bytes into the last
cluster

– that is into the second sector

– the end of that sector will contain zeros

1000 bytes

Detecting end of file

• So, we search for a cluster which has a second
sector which contains the end of the file and
24 zeros

1000 bytes

Problems

• Microsoft Common Document Format (CDF)
files seem to occupy a whole number of
sectors and so this technique won’t work with
them.

• We get most confidence if the file ends with a
non zero value.

Techniques

• Technique 1

– Recover file system activity to identify file cluster
layout.

• Technique 2

– Reliably determine cluster size and the data area.

• Technique 3

– Identify the end of files which do not occupy a
whole number of sectors

Joining Directory Clusters

• A 4k cluster has room for 32 directory entries.

• A file usually requires more than 1 entry, in
fact, tests show that typically a file requires
3.4 entries and so one cluster can hold 9 of
these typical files.

• When a file is created and there isn’t enough
room in the directory a new cluster is added.

Long FileName entries

• Every file needs a base directory entry

• When a file is created which requires a long
file name, then special entries are created
(Long FileName or LFN entries).

• Tests show that 2.4 LFN entries are required
for every file. Add the base directory entry to
get 3.4

• The LFN entries have a checksum to tie them
to the base directory entry.

Joining Directory Clusters

• The file directory entries may straddle a
cluster.

– We can then use the checksum to join the clusters
together.

• We can also use common parent entries

• Failing that, we can use the file times in the
directory to match

4 Techniques

• Technique 1

– Recover file activity to identify file cluster layout.

• Technique 2

– Reliably determine cluster size and the data area.

• Technique 3

– Identify the end of files

• Technique 4

– Joining up directory clusters

In Practice

Most files are not fragmented

• Simson Garfinkel used his huge corpus to
determine that only 6% of files were
fragmented. (http://simson.net/clips/academic/2007.DFRWS.pdf)

• We can quickly run through these and validate
them and remove that part of the disk from
further consideration

– spend more time on the fragmented files.

http://simson.net/clips/academic/2007.DFRWS.pdf

Tying it all together

An Actual Example

• 4G FAT32 Flash key

• Originally formatted using XP

• ¾ filled with files

– backed up, so mostly created

• Then formatted with OS X

– same cluster size, but different data area

• A small number of file created occupying
about 0.1% of the disk

Recovery

• We consider a block of files to be a set of files
which are laid out sequentially
– we can have more confidence that these files are

not fragmented

• We recovered 2856 files occupying 1.6 GB
bytes. The system found 65 file blocks with an
average size of 61 files in a block. The largest
block contained 424 files.

• Only the directories were fragmented

Efficiency

• This approach could be made very efficient. If
you can verify a file by examining the last
cluster, then you don’t need to examine every
cluster on the disk.

• Every unfragmented file is an opportunity to
avoid examining its clusters.

Exercise

Let’s go back in time

• FILE1.TXT is increased by one cluster
• FILE5.TXT (1 cluster is created)

FILE1.TXT

SU
B

D
IR

FILE2.TXT

Let’s go back in time

• FILE1.TXT is increased by one cluster
• FILE5.TXT (1 cluster is created)
• FILE2 is deleted
• When we look only at directory entries can we

be sure that FILE1.TXT occupies those clusters

FILE1.TXT

SU
B

D
IR

FILE1.TXT

SU
B

D
IR

FILE1.TXT

SU
B

D
IR

This?

Or this?

Code

• Code is at
http://code.google.com/p/comebackfat/

• It is exploratory

• It is not efficient

http://code.google.com/p/comebackfat/
http://code.google.com/p/comebackfat/

Thank You

