GRR Rapid
Response

An exercise in failing to replace
yourself with a small script.

Agenda

Why GRR?

What we built

Demo 1

Key Design decisions
Demo 2

Roadmap

Why GRR?

e Tell me if this machine is compromised

e Joe saw something weird, check his machine

e \Why did a packet containing "fooooo" go from A to B?

e Forensically acquire 25 machines for analysis

Why GRR?

e Tell me if this machine is compromised
o (while you're at it, check 20000 of them)

e Joe saw something weird, check his machine
o (p.s. Joe is on holiday in Cambodia and on 3G)

e Why did a packet containing "fooooo" go from A to B?
o (by the way, we're not sure what A was)

e Forensically acquire 25 machines for analysis
o (p.s. they're in 5 continents and none are Windows)

Things We Want

e Make our open tools "enterprise” capable
e Remote access to investigate machines
e Scale to 100K+ machines easily

e \Work over the Internet securely

e \Work across OSX/Linux/Windows

Things We Want

Automation should be easy
O and shouldn't be tied to a vendor's product

Should be my memory
O Remember the details about artifacts
O Know anomalies

Allow multiple people to work a case at once

Customizable

What We Wanted

What We Built

What We Built

Agent based system (Windows, OSX, Linux)
Communicates over the Internet on HTTP
Scalable backend

Ajax Ul

Enables most common IR/Forensics tasks

Open source (Apache/GPL Dual Licensed)
Mongo NoSQL backend

Python compiled to exe/elf/mach-o
Comms over encrypted, signed protobufs

Demo Time

Install a new agent

Collect some artifacts

Show filesystem view

View browser history

List processes extracted from memory

! & GRR Admin Console

- € | [testbox1:8000/#c=C.0840582f25caf4b7&reason=&main=VirtualFileSystemView&
Help Report a problem — Help | Report a problem
GRRIRapidlResponse o —

AR AR A AR

N

k- || devices
domU-12-31-39-0A-9C-6E 4 []fs
Stats: @ 3 seconds ago +os -‘———
L) bin
Start new flows | boot alternatives.log VFSFile 2012-09-10 12:47:32
Manage launched flows ‘% :fcv alternatives.log. 1 VFSFile 0 2012-09-10 12:47:32
Browse Virtual Filesystem]1 Iri»sme apt VFSDirectory 0 2012-00-10 12:47:32
-
Host Information | lib64 -
=] auth.log Hashimage 323438 2012-09-10 12:47:46
GRR Management _% lost+founc
media S—
Auiomatad Row schaduling ./ mnt . ‘ Stats =~ Download | TextView | HexView
Show Statistics]1 opt |
&g proc offset 0 size 20000 encoding |utf_8 v
.| root =/° 0
L run Sep JF 25:02 domU-12-31-39-0A-9C-6E CRON[11536]: pam unix(cron:session): session closed for user root
. sbin Sep 9 7 domU-12-31-39-0A-9C-6E CRON[12482]: pam unix(cron:session): session opened for user root by
| selinux Sep 9 47:02 domU-12-31-39-0A-9C-6E CRON[12482]: pam unix(cron:session): session closed for user root
| srv Sep 9 50:29 domU-12-31-39-0A-9C-6E sshd[12550]: Invalid user oracle from 218 .128.43
- . Sep 9 50:32 domU-12-31-39-0A-9C-6E sshd[12553]: Invalid user oracle from 218 .128.43
L sys ‘! Sep 9 50:36 domU-12-31-39-0A-9C-6E sshd[12556]: Invalid user oracle from 218 .128.43
) tmp Sep 9 50:39 domU-12-31-39-0A-9C-6E sshd[12558]: Invalid user oracle from 218 .128.43
L usr Sep 9 50:43 domU-12-31-39-0A-9C-6E sshd[12561]: Invalid user nagios from 218 .128.43
| var Sep 9 50:46 domU-12-31-39-0A-9C-6E sshd[12564]: Invalid user nagios from 218 .128.43
s Sep 9 50:51 domU-12-31-39-0A-9C-6E sshd[12566]: Invalid user nagios from 218 .128.43
Sep 9 50:54 domU-12-31-39-0A-9C-6E sshd[12569]: Invalid user nagios from 21 .128.43
Sep 9 17:01 domU-12-31-39-0A-9C-6E CRON[13445]: pam unix(cron:session): session opened for user root by
Sep 9 17:01 domU-12-31-39-0A-9C-6E CRON[13445]: pam unix(cron:session): session closed for user root
Sep 9 08:17:01 domU-12-31-39-0A-9C-6E CRON[15838]: pam unix(cron:session): session opened for user root by
Sep 9 08:17:01 domU-12-31-39-0A-9C-6E CRON[15838]: pam unix(cron:session): session closed for user root
Sep 9 09:09:08 domU-12-31-39-0A-9C-6E sshd[1814C] Did not receive identification string from 79.142.79.5
Sep 9 09:17:01 domU-12-31-39-0A-9C-6E N[]: pam_unix(cron:session): session opened for user root by
Sep 9 09:17:01 domU-12-31-39-0A-9C-6E N[]: pam_unix(cron:session): session closed for user root
Sep 9 10:17:01 domU-12-31-39-0A-9C-6E []: pam_unix(cron:session): session opened for user root by
Sep 9 10:17:01 domU-12-31-39-0A-9C-6E []: pam_unix(cron:session): session closed for user root
Sep 9 10:19:30 domU-12-31-39-0A-9C-6E []: reverse mapping checking getaddrinfo for hosted- by altu
(= F-N 0 310:310.27 domrl 12 27 20 02 _0c & 1 oo ne mearme e oheamlblins wmb e dAAd I FA Far RAansaAd - T &

Key Design Decisions

e Thin vs thick client
e Asynchronous Flows

e Axis of Time

Example: Directory Listing

Server Thick Client
ListDirectory c:
\Windows\System32
0S Sleuthkit
istDi ListDirectory(c:
ListDirecto :
Y Stat \Windows\System32)
Server Thin Client
Read \\.\PhysicalDrive0
offset 2232, 1024 bytes _ _
SleuthKit Open(\\.\PhysicalDrive0)
ListDirectory Seek(2232)
Buffer Read(1 024)

Thin Client vs Thick Client

e No client updates for e Decreased network
new functionality traffic

e Raw data stored for e Decreased server
future analysis. complexity

e Reduced attacker
visibility

e Reduced attacker
subversion options

Decision: Let's do both

Scale - Asynchronous Flows

!H Client POST

e Plan for 500,000+ clients
e Collect 8GB memory
from 1k clients at once

e |[ndividual clients cannot
"hold" resources

e Only limited by
CPU/Memory/Disk
available

e Grow as needs grow

requests

/ Load balancer \

l

l

Frontend
Server

Frontend
Server

GUI
Console

CLI
Console

RDF DB

@Ej@

essa

Worker

Flow restorationan:
execution.

Worker

Scale - Asynchronous Flows

Initial State

CheckHash

WriteBlock

Done

CallClient("HashFile","foobar.iso", next_state="

CheckHash")

if not HashinDB(args.hash):
CallClient("ReadBuffer", "foobar.iso",
offset = 0, length = 4096,
next_state = "WriteBlock")

WriteFile(args.data)
if args.offset < file_length:
CallClient("ReadBuffer", "foobar.iso",
offset = args.offeset + 4096, length = 4096,
next_state = "WriteBlock")
else: goto_state("Done")

VerifyHash("foobar.iso")

Axis of Time

e Live forensics is a smear
e \With scalable storage comes snapshots

e Historical record of artifacts
e Enables statistical analysis

e \What has changed on this system this
week?

e \What are the new services in my enterprise?

Axis of Time

e Keep as much
history as you
have storage

e Files, processes,
boot sectors,
mutexes, registry
keys...

Versions of aff4:/C.793f15613d7251f6/processes

Age | Type

2012-09-17 22:19:58 ProcessListing
2012-09-18 22:18:53 ProcessListing
2012-09-19 22:18:36 ProcessListing

AvrtrvilhibA

Ok

4}

Console Screenshot

File Edit View Terminal Help

Welcome to the GRR console
to get help

Type help<enter>

dbilby@storm3[1]
dbilby@storm3[1]
f4.ALL TIMES)

dbilby@storm3[1]
dbilby@storm3[1]
dbilby@storm3[1]

1
2

3
4
5

2012-09-17 22:19:

2012-09-18 22:18:
2012-09-19 22:18:

dbilby@storm3[1]
dbilby@storm3[1]
dbilby@storm3[1]
dbilby@storm3[1]

set([u'C:\\Windows\\notepad.exe

Open the client.
p = aff4.FACTORY.Open("C.793f15613d7251f6/processes", age=af
proc lists = p.GetValuesForAttribute(p.Schema.PROCESSES)
List the snapshots we have
for p in proc lists:
print p.age, len(p)

51

57

59

Find what 1is new

a = set([m.exe for m in proc lists[0]])
b = set([m.exe for m in proc lists[1]])
print a.difference(b)

k, u'C:\\Windows\\System32\\evil.exe', u'C:\\Wind

ows\\System32\\ftp.exe'])

dbilby@storm3[1] |10
dbilby@storm3[1] |10
dbilby@storm3[1]|10> [}

Features

Windows, Linux, OSX
clients

Open source memory
drivers Linux, OSX,
Windows

Detailed monitoring of
client CPU/Memory
Impact

Auto update
mechanism

Volatility integration

Secure comms
infrastructure designed
for Internet deployment
Web Ul

Scriptable console
access

Retrieve files
Search memory
Timeline events
Schedule recurring
actions

Reporting

Demonstration

e Hunt
e Enterprise resource monitoring

Roadmap

A long road ahead....

Testing testing testing
Simplification of management
Ul overhaul

Timelining (log2timeline python)
Artifact parsers

Anomaly detection

Memory analysis

Contributors

Michael Cohen, Andreas Moser, Darren Bilby,
Germano Caronni, Joachim Metz, Jordi
Sanchez, Kristinn Gudjonsson, Elizabeth
Schweinsberg....

Built on the shoulders of giants...
SleuthKit, Volatility, AFF4, Log2timeline...

Questions?

Live Demo: http://bit.ly/GRR_Demo

Documentation: http:/grr.googlecode.com/git/docs/user_manual.html
Code at: code.google.com/p/grr

Mailing lists: groups.google.com/grr-users
groups.google.com/grr-developers

http://bit.ly/GRR_Demo

