Georgetown University
Content Similarity

(gucs)
Alpha Release

Department of Computer Science
Georgetown University



ity

Ity

gucs
Alpha Release

Department of Computer Science
Georgetown University



sdtext
Alpha Release

Department of Computer Science
Georgetown University



Georgetown Team

Clay Shields
Lindsay Neubauer
Ophir Frieder
Mark Maloof
Micah Sherr



Content-Based Fingerprinting

 Our approach is to create fingerprints that are
based on the content of the files

— Formatting shouldn’t disrupt matching
* Fingerprints are digests of the file contents
— Can be matched against each other to determine
similarity
— Designed to be robust to errors and edits

* This is a novel application of information
retrieval techniques



Fingerprint Creation

* Use a training set of documents
— Set you want to match against later
— Documents that are similar to those sought
— General documents in correct language

e Extract statistically important terms

idf. =log #D]
1+1#D, |
* Create a dictionary of terms within a range of IDFs
— Low IDFs too common
— High IDFs too distinct




Bit Vector Fingerprints

* A Bit Vector fingerprint shows which
dictionary terms were present in a document

— Process document

— For each term in document in dictionary, mark
that position



Matching Bit Vector
Fingerprints

* Allows for similarity matching

 Compute cosine similarity
— Treat fingerprint as vector of d dimensions
— Measure cosine of angle between two vectors
— If within specified range, consider match

* Allows for range of comparisons well after
fingerprint creation
— Specify parameter to matcher
— Vary to optimize precision or recall



sdtext
Order of Operations

Determine tokenizers
— Developing standard sets for various languages

Determine parameters

— Optional, can improve accuracy

Build dictionary

— Trim to appropriate IDF range
Fingerprint files
Compare fingerprints



Tokenizers

* First tokenizer must read from data source

— FileTokenizer
Reads and tokenizes a file

— GzippedFileTokenizer
* Reads and tokenizes a compressed file

— QutsidelnFileTokenizer

* Extracts text and tokenizes a non-text file using Oracle’s
Outsideln

— Parameters:
* “lines” (split file by line)
* “tokens” (split file by whitespace)



Foreign Language Support

— ArabicFileTokenizer
* Reads and tokenizes an Arabic language file
* Uses Apache Lucene’s ArabicAnalyzer

— ChineseFileTokenizer

* Reads and tokenizes a Chinese language file

* Uses Apache Lucene’s ChineseAnalyzer or
SmartChineseAnalyzer
* Parameters:

— “individual” (split by individual characters)
— “smart” (split by probabilistic word segmentation)



Tokenizers

e Other tokenizers provide filter

— StripPunctuationTokenizer
 Removes punctuation from each token

— RemoveNumericTokensTokenizer
e Removes numbers from each token

— RemoveTokensWithNumbersTokenizer

* Removes tokens containing numbers



Tokenizers

e Other tokenizers provide filter

— MaximumLengthTokenizer
 Removes tokens that are too long
* Parameter: token length

— MinimumLengthTokenizer
e Removes tokens that are too short
* Parameter: token length

— StopWordRemoverTokenizer

 Removes tokens if they are pre sent in a given list of stop
words

* Parameter: file name containing stop words



Tokenizers

e Language specific stemming
— Stemming removes word endings to recognize
word roots

e Plurals
* Conjugations
* Imperfect but useful

— PorterTokenizer
* Alters tokens via English stemming



Experiment

Best accuracy comes from analysis of files to
be matched

This looks for best dictionary IDF range and
group of tokenizers for the data set

Computationally intensive
Must select parameters based on output

Work in progress



Experiment Configuration

* Number of Trials, Number of Threads
 Database backend option
e Dataset name and path
* Dictionary size
— (count/percent),

 Sample size
— (count/percent)

* Min & max IDF ranges

* Tokenizers/Groups of Tokenizers
— Manglers

* Fingerprinters
* Matchers and their parameters



Creating Dictionary

* Once parameters have been selected can
create dictionary
— Extracts text and analyzes term frequency

— Then trim dictionary by IDF range

XML output file contains remaining terms and
frequencies

— Can be shared for others to use for creating
fingerprints



Creating Digests

* Given dictionary, fingerprint creation is easy

— Parse text
 Provide hooks to Oracle Outsideln for extraction
e Adaptable to other tools

— Process with tokenizers

— Record term presence

e Output configuration options available

— Verboseness, ease of sharing



Fingerprinter Output

e Universal:
— Baseb4 encoded fingerprint, fingerprint's unique
identifier (GUID), and fingerprinter name

— Version, creation time, and system on which the
fingerprint was created

— Name, directory, GUID, and version of the
dictionary used to create the fingerprint

— If provided at creation: the creator and creating
program of the fingerprint



Fingerprinter Output

* Option: dataSource
— Filename of the document fingerprinted
— File path/directory of the dictionary used to create the fingerprint
— System on which that dictionary was created
— If provided: volume, disk image, and byte run
* Option: dictionary
— Full dictionary included in the fingerprint file
 Option: digest (experimental)
— File segment (by position in token stream)
— Baseb4 encoded digest

— Compression settings
— Information about unknown tokens (compressed and Base64
encoded)



Fingerprint Comparison

 Two digests can be easily scored against each
other

— Output ranges from 0 to 99

— Up to you to decide cut-off for appropriate match
* Higher gives better precision
* Lower give better recall



Ongoing work

Automatic parameter selection
Simple GUI for parameter selection

Gnu Java Compiler testing
— Native executable

Creating fingerprints over multiple file
segments

Multiple parallel dictionaries
Whatever we can do to help you all



Code available

* You can download and try the code at:

Www.CS.georgetown.edu/~clay/research/sdtext.html

e After DNS propagates (by tomorrow)

www.Ssdtext.com



Where to Start

* Run ant build from the base directory

— All command line programs can be run using
sdtext.jar, located in the build directory

— Each command line program is also built in the
build/dist directory

 Some programs can have large memory
requirements
— Expand java heap size
javam = java -d64 -Xmslg -Xmx8g



File Tokenization

TokenizeFile
* Tokenizes a file and prints the resulting tokens to the
screen
— Configuration file specifies a list of tokenizers to use on the
file
* Usage:
javam -jar sdtext.jar TokenizeFile
-1 <filename> -c <tokenizer config file>
 Example

javam -jar build/sdtext.jar TokenizeFile

-i doc/input files/federalist/9 -c doc/
configuration files/tokenizers config.xml



Experiment

* Usage

javam -jar sdtext.jar Experiment -c
<config file>

 Example

javam -jar build/sdtext.jar Experiment

—c doc/configuration files/
experiment config.xml



Dictionary Creation

CreateDictionary

e Configuration file specifies a list of tokenizers to apply
to the file

* Usage
javam -jar sdtext.jar CreateDictionary -o
<dictionary name> -p <dataset path> -c <tokenizer

config file>

 Example

javam -jar build/sdtext.jar
CreateDictionary -o doc/output files/
dictionary.xml -p doc/input files/
federalist/ -c doc/configuration files/
tokenizers config.xml



Dictionary Creation

TrimDictionary

* Creates a new dictionary without any tokens from the
current dictionary that are outside the range of the
given normalized IDFs.

— English heuristic: min IDF ~ .3 and max IDF ~ .7
* Usage

javam -jar sdtext.jar TrimDictionary -d
<dictionary file> -b <minIDF> -t <maxIDF> -0
<trimmed output filename>

 Example

javam -jar build/sdtext.jar TrimDictionary -d doc/
output files/dictionary.xml -b .3 -t .8 -o doc/
output files/dictionary trimmed.xml



Dictionary Creation

ShowDictionaryTokens

* Displays all the dictionary’s tokens with their
frequencies, IDFs, and normalized IDFs
* Usage

javam -jar sdtext.jar
ShowDictionaryTokens -d <dictionary file>

 Example

javam -jar build/sdtext.jar

ShowDictionaryTokens -d doc/output files/
dictionary.xml



Dictionary Creation

ShowDictionaryStatistics

Displays the dictionary’s total number of
documents, total number of tokens, maximum
IDF, and tokenizers, and whether it has been
trimmed.

Usage

javam -jar sdtext.jar
ShowDictionaryStatistics -d <dictionary file>

Example

javam -jar build/sdtext.jar
ShowDictionaryStatistics -d doc/
output files/dictionary.xml



Fingerprint Creation

BitVectorFingerprinter

* Creates a fingerprint for the given file using the given dictionary.

— May specify the output’s destination filename and an output
configuration file (specifies which types of output to include)

— If no destination filename is specified,
fingerprint_<randominteger>.xml is used

— If no output configuration filename is specified, uses full output
* Usage

javam -jar sdtext.jar BitVectorFingerprinter -i <file
to fingerprint> -d <dictionary file> -0 <optional:
destination file> -c <optional: output config file>

 Example

javam -jar build/sdtext.jar BitVectorFingerprinter -i
doc/input files/federalist/9 -d doc/output files/
dictionary trimmed.xml



Sharing Fingerprints

ExtractDictionary

* Given a fingerprint containing a dictionary, extracts the
dictionary as an XML file.

— Will clobber an existing dictionary file if different name not
specified

* Usage
javam -jar sdtext.jar ExtractDictionary -f

<fingerprint file> -d <optional: dictionary
filename>

 Example

javam -jar build/sdtext.jar ExtractDictionary -i
doc/output files/fingerprint federalist9.xml -o
doc/output files/

dictionary extracted federalist9.xml



ScoreFingerprints

Fingerprint Comparison

 Compares two fingerprints and scores their similarity

based on the given matcher.
* Range 0to 99

* Usage

javam -jar sdtext.jar ScoreFingerprints -m
<matcher> -f <fingerprint file> -f <fingerprint

file>

 Example

javam -jar build/sdtext.
ExactFingerprintMatcher
fingerprint federalist9.
fingerprint federalist?9.

jar ScoreFingerprints -m
-f doc/output files/

xml -f doc/output files/
xml



Fingerprint Comparison

CompareDirectory

 Compares a fingerprint to all files in a directory
* Dictionary included in fingerprint or specified as a file
* OQutput list of files ordered by score, high to low, above minimum

* Usage
javam -jar sdtext.jar CompareDirectory -m
<matcher> -f <fingerprint file> -p <directory>
-s <optional: min score> <optional:
dictionary file>

 Example

javam -jar build/sdtext.jar CompareDirectory
-m CosineSimilarityFingerprintMatcher copies -
f doc/output files/fingerprint federalist9.xml
-p doc/input files/federalist/ -s 15



