
Binee: Complete Emulation
With Advanced Malware

John Holowczak @skipwich

VMware Carbon Black TAU

The Problem: getting information from binaries
Each sample contains some total set of information. Our goal is to extract as
much of it as possible

Time/Cost to analyze

Sa
m

pl
e

co
ve

ra
ge

Static

Dynamic

High coverage
Immediate discovery
Few features

Low coverage
Long discovery
Many features

Core Problems

1. Obfuscation hides much of the info

2. Anti-analysis is difficult to keep up with

3. Not all Malware is equal opportunity

Our Goal: Reduce cost of information extraction

1. Reduce the cost of features
extracted via dynamic analysis

2. Increase total number of features
extracted via static analysis

3. Ideally, do both of these at scale

Time/Cost to analyze

Sa
m

pl
e

Co
ve

ra
ge

Dynamic

Static +
Emulation

High coverage
Immediate discovery
Many features

Low coverage
Long discovery
Many features

The How: Emulation

Extend current emulators by mocking functions, system calls and OS subsystems

Existing PE Emulators

● PyAna https://github.com/PyAna/PyAna
● Dutas https://github.com/dungtv543/Dutas
● Unicorn_pe https://github.com/hzqst/unicorn_pe
● Long list of other types of emulators

https://www.unicorn-engine.org/showcase/

https://github.com/PyAna/PyAna
https://github.com/dungtv543/Dutas
https://github.com/hzqst/unicorn_pe
https://www.unicorn-engine.org/showcase/

Requirements: What are we adding/extending from
current work?

1. Mechanism for loading up a PE file with its dependencies
2. Framework for defining function and API hooks
3. Mock OS subsystems such as

a. Memory management
b. Registry
c. File system
d. Userland process structures

4. Mock OS environment configuration file
a. Config file specifies language, keyboard, registry keys, etc…
b. Rapid transition from one Mock OS configuration to another

Binee

Where to start? Parse the PE and DLLs, then map
them into emulation memory...

Build hook table by linking DLLs outside emulator

Target PE

DLL1

DLL2

DLL3

Emulated
Process Memory

Binee Address to
Hook table

1. Open PE and all dependencies

2. Update DLL base addresses

3. Update relocations

4. Build Binee exports lookup table

5. Resolve Import Address Tables
for each

6. Map PE and DLLs into memory

Overcoming Microsoft’s ApiSet abstraction layer

Parse ApiSetSchema.dll (multiple versions) and load proper real dll.

Geoff Chappell https://www.geoffchappell.com/studies/windows/win32/apisetschema/index.htm

api-ms-<something>.dll ApiSet Schema
Table kernelbase.dll

https://www.geoffchappell.com/index.htm
https://www.geoffchappell.com/studies/windows/win32/apisetschema/index.htm

kernel32:CreateFileA

What is the minimum that the malware
needs in order to continue proper execution?

Requirements for hooking

1. A mapping of real address to Binee’s Hook for that specific function?
2. The calling convention used?
3. How many parameters are passed to the function?
4. Need to determine the return value if any?

type Hook struct {

Name string

Parameters []string

Fn func(*WinEmulator, *Instruction) bool

Return uint64

 ...

}

emu.AddHook("", "Sleep", &Hook{

 Parameters: []string{"dwMilliseconds"},

 Fn: func(emu *WinEmulator, in *Instruction) bool {

 emu.Ticks += in.Args[0]

 return SkipFunctionStdCall(false, 0x0)(emu, in)

 },

})

Partial Hook, where the function itself is emulated within the DLL

emu.AddHook("", "GetCurrentThreadId", &Hook{Parameters: []string{}})

emu.AddHook("", "GetCurrentProcess", &Hook{Parameters: []string{}})

emu.AddHook("", "GetCurrentProcessId", &Hook{Parameters: []string{}})

Two types of hooks in Binee

Full Hook, where we define the implementation

Hook Parameters field defines how many
parameters will be retrieved from emulator and The
name/value pair in output

[1] 0x21bc0780: P memset(dest = 0xb7feff1c, char = 0x0, count = 0x58)

emu.AddHook("", "memset", &Hook{Parameters: []string{"dest", "char", "count"}})

Output is the following

Example: Entry point execution
./binee -v tests/ConsoleApplication1_x86.exe

[1] 0x0040142d: call 0x3f4

[1] 0x00401821: mov ecx, dword ptr [0x403000]

[1] 0x0040183b: call 0xffffff97

[1] 0x004017d2: push ebp

[1] 0x004017d3: mov ebp, esp

[1] 0x004017d5: sub esp, 0x14

[1] 0x004017d8: and dword ptr [ebp - 0xc], 0

[1] 0x004017dc: lea eax, [ebp - 0xc]

[1] 0x004017df: and dword ptr [ebp - 8], 0

[1] 0x004017e3: push eax

[1] 0x004017e4: call dword ptr [0x402014]

[1] 0x219690b0: F GetSystemTimeAsFileTime(lpSystemTimeAsFileTime = 0xb7feffe0) = 0xb7feffe0

[1] 0x004017ea: mov eax, dword ptr [ebp - 8]

[1] 0x004017ed: xor eax, dword ptr [ebp - 0xc]

[1] 0x004017f0: mov dword ptr [ebp - 4], eax

[1] 0x004017f3: call dword ptr [0x402018]

At this point, we have a simple loader that will
handle all mappings of imports to their proper DLL.

We’re basically done, right?

Still have some functions that require user land memory objects that do not
transition to kernel via system calls

We need segment registers to point to the correct memory locations (thanks
@ceagle)

Not inside of main yet…

Userland structures, TIB/PEB/kshareduser

We need a TIB and PEB with some reasonable values

Generally, these are configurable.

Many just need some NOP like value,
e.g. NOP function pointer for approximate
malware emulation.

All address resolution and mappings
Are builts outside the emulator

type ThreadInformationBlock32 struct {

CurentSEH uint32 //0x00

StackBaseHigh uint32 //0x04

StackLimit uint32 //0x08

SubSystemTib uint32 //0x0c

FiberData uint32 //0x10

ArbitraryDataSlock uint32 //0x14

LinearAddressOfTEB uint32 //0x18

EnvPtr uint32 //0x1c

ProcessId uint32 //0x20

CurrentThreadId uint32 //0x24

…
}

PEs are parsed and loaded. Basic structures like the
segment registers and TIB/PEB are mapped with

minimum functionality.

We’re defining the entire environment outside of
the emulator...

Starting with the Mock File System

What are the requirements for
CreateFileA?

Returns a valid HANDLE into EAX
register

HANDLEs stored on heap; heap
interaction in the kernel done by
Binee’s memory manager

Creating Files in the Mock File Subsystem

CreateFile

Emulator

Full Hook Handler

HANDLE Lookup Table

Full hook captures HANDLE from
parameters to CreateFile

If file exists in Mock File System or
permissions are for “write”. Create a
new Handle object and get unique ID
from Heap Manager

Write HANDLE back to EAX

Writing Files in the Mock File Subsystem

WriteFile

Emulator

Full Hook Handler

HANDLE
Lookup
Table

Temp

Real File
System
(Sandboxed)

Full hook captures HANDLE from
parameters to WriteFile

HANDLE is used as key to lookup
actual Handle object outside of
emulator

All writes are written to sandboxed
file system for later analysis.

Malware thinks file was written to
proper location and continues as if
everything is successful

Mock Registry Subsystem

RegOpenKeyA

Mock Registry EmulatorFull Hook on Registry functions

Our hook interacts with the Mock Registry
subsystem that lives outside of the
emulation

Mock Registry has helper functions to
automatically convert data to proper types
and copy raw bytes back into emulation
memory

Configuration files defines OS environment quickly

● Yaml definitions to describe as much of the OS context as possible
○ Usernames, machine name, time, CodePage, OS version, etc…

● All data gets loaded into the emulated userland memory

root: "os/win10_32/"

code_page_identifier: 0x4e4

registry:

 HKEY_CURRENT_USER\Software\AutoIt v3\AutoIt\Include: "yep"

 HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Arbiters\InaccessibleRange\Psi: "PhysicalAddress"

 HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Arbiters\InaccessibleRange\Root: "PhysicalAddress"

 HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Arbiters\InaccessibleRange\PhysicalAddress:

"hex(a):48,00,01,00,00,00,00,0

0,00,00,01,00,00,00,00,03,00,01,00,ff,ff,ff,ff,ff,f

f,ff,ff"

Configuration files can be used to make subtle
modifications to the mock environment which

allows you to rapidly test malware in diverse
environments

Let’s do more...

Mocked Threading

Round robin scheduler approximately simulates a multi-thread environment.

Time slices are configurable but equal for each “thread” of execution. Thread
manager handles all the context switching and saving of registers.

Allows us to hand wave (punt for later) most multithreading issues.

Thread 1
Thread 2

Thread 3
Thread 4

Thread Manager Threads inside the emulator

Increasing fidelity with proper DllMain execution

Need to setup stack for DllMain call, set up proper
values for DLLs loaded by the PE.

Call this for every DLL loaded by the PE.

But how to do this in the emulator?

Start emulation at each DllMain and stop at ???

BOOL WINAPI DllMain(

 In HINSTANCE hinstDLL,

 In DWORD fdwReason,

 In LPVOID lpvReserved

);

ROP Gadgets — an easy shortcut to loading DLLs

A simpler approach is to only start the emulator once when the entire process
space is layed out. However, the start point is no longer the PE entry point.

Instead, entry point is now the start of our ROP chain that calls each loaded
DllMain in order and ending with the PE’s entry point address

lpvReserved
fdwReason

hinstDll
ret

lpvReserved
fdwReason

hinstDll
ret

lpvReserved
fdwReason

hinstDll
ret

envp
argv
argc

 dll_1 dll_2 dll_3 malware

http://www.youtube.com/watch?v=HnwPNcVnaT8

How can I get started?

Fork or clone from http://github.com/carbonblack/binee

Utilize either the included Dockerfile or your OS of choice to compile with Go

Import necessary DLL’s (see README and wiki for further instructions)

Run malware/samples against Binee!

Implement any missing hooks to further emulation

(Send a Pull Request!)

http://github.com/carbonblack/binee

Implement a missing hook: an example
...

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'HttpSendRequestA') = 0x2bcc5710

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'HttpSendRequestExA') = 0x2bcc7350

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'HttpEndRequestA') = 0x2bcc4df0

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetQueryOptionA') = 0x2bc76e10

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetQueryDataAvailable') =

0x2bcb69e0

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetCanonicalizeUrlA') =

0x2bd32450

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetGetCookieA') = 0x2bd5e6e0

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetSetCookieA') = 0x2bd5e9f0

[1] 0x21d6e670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetSetStatusCallbackA') =

0x2bcc63f0

[1] 0x21d758b0: **kernel32.dll:SearchPathA**() = 0x0

[1] 0x2019aa30: **api-ms-win-core-libraryloader-l1-2-0.dll:SearchPathA**() = 0x0

[1] 0x220881b0: P ntdll.dll:RtlInitAnsiStringEx(unknown1 = 0xb7fefc58, unknown2 = 0xb7feff30) = 0xb7fefc58

[1] 0x2013caa0: F api-ms-win-core-libraryloader-l1-2-0.dll:_amsg_exit(retcode = 0xb7fefc90) = 0xb7fefc58

root@01c6757dedff:~/go/src/github.com/carbonblack/binee#

Implement a missing hook: function documentation

Microsoft docs helpful for this function

Have parameter names and types, return value,
rough idea of what function does

Now time to implement a full hook

Implement a missing hook: create a full hook

emu.AddHook("", "SearchPathA", &Hook{

Parameters: []string{"a:lpPath", "a:lpFileName", "a:lpExtension", "nBufferLength", "lpBuffer", "lpFilePart"},

Fn: func(emu *WinEmulator, in *Instruction) bool {

mb := util.ReadAscii(emu.Uc, in.Args[1], 0)

str, err := util.SearchFile(emu.SearchPath, mb)

if err != nil {

return SkipFunctionStdCall(true, 0)(emu, in)

}

if uint64(len(str)) > in.Args[3] {

return SkipFunctionStdCall(true, in.Args[3])(emu, in)

}

return SkipFunctionStdCall(true, uint64(len(str)))(emu, in)

},

})

Implement a missing hook: rinse, repeat
...

[1] 0x24af5670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetCanonicalizeUrlA') = 0x2bd32450

[1] 0x24af5670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetGetCookieA') = 0x2bd5e6e0

[1] 0x24af5670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetSetCookieA') = 0x2bd5e9f0

[1] 0x24af5670: F kernel32.dll:GetProcAddress(hModule = 0x2b9ab000, lpProcName = 'InternetSetStatusCallbackA') = 0x2bcc63f0

[1] 0x24afc8b0: F kernel32.dll:SearchPathA(lpPath = '', lpFileName = 'RPAWINET.DLL', lpExtension = '', nBufferLength = 0x0,

lpBuffer = 0x0, lpFilePart = 0x0) = 0x0

[1] 0x24b4ee68: F kernel32.dll:EnterCriticalSection(lpCriticalSection = 0x42ebb8) = 0xd

[1] 0x24b4ee68: F kernel32.dll:EnterCriticalSection(lpCriticalSection = 0x42eba0) = 0x9

...

[1] 0x24afa4d0: F kernel32.dll:LoadLibraryA(lpFileName = 'COMCTL32') = 0x27332000

[1] 0x24af5670: F kernel32.dll:GetProcAddress(hModule = 0x27332000, lpProcName = 'InitCommonControlsEx') = 0x27350590

[1] 0x27350590: **comctl32.dll:InitCommonControlsEx**() = 0x27350590

[1] 0x24af97d0: **kernel32.dll:QueryActCtxW**() = 0xb7fef8a8

[1] 0x20135c70: **api-ms-win-core-localization-private-l1-1-0.dll:QueryActCtxW**() = 0xb7fef8a8

[1] 0x258e00d0: F ntdll.dll:ApiSetQueryApiSetPresence(Namespace = 0x200012f8, Present = 0xb7fef86f) = 0x1

[1] 0x258f4580: P ntdll.dll:RtlNtStatusToDosError(Status = 0xc0000002) = 0x0

...

We’ve open-sourced this — What’s next

● Increase fidelity with high quality hooks (taking PR’s!)
● Single step mode, debugger style
● Networking stack and implementation, including hooks
● Add ELF (*nix) and Mach-O (macOS) support
● Anti-Emulation

Thank you and come hack with us

https://github.com/carbonblack/binee

John Holowczak @skipwich

https://github.com/carbonblack/binee

