emete DktC; Cennection

| | ' |
& Remotey Dessp

T

N m-\f_;ﬁ‘ rfL

o
Co li:ej}/o JEXa ‘o terf%rlk
Us%r nam)@ \&)na spem}?e(g

A

The@:o ibuter ! me\ﬁlel
~—‘Q9ﬂ" - = ~ d -2 {

[~ __o .
~) Show Optighie

Putting Together the RDPieces

Brian Moran

Consultant

BriMor Labs

November 18, 2020

D A Brief List of Topics =

e RDP - WTF?
(YOU: But Brian, we don’t really see much of this right meow)
(ME: Perhaps, but this is why you should care)

* Evidence

* Research

e Stuff with Things

* Profit?

#OSDFCON

= =)

| Feel So Seen

* Hello, my name is Brian Moran
* 13+ years Air Force career
— 17ish years mobile exploitation &
DFIR focus
— Started BriMor Labs in 2014
* Very happy since!

AIR FORCE CYBER COMMAND

Yeah, we're screwed

#OSDFCON

= =)

| Feel So Seen (Cont)

* You may know me from a variety of things, but | am very proud of
the #DFIRFitin2020 challenge that was organized with the help of
Kat Hedley (@4enzikatOr)

— You can still join us! Details at https://www.dfirfitin2020.com

* Throughout 2020, our #DFIRFit4Good events have raised over
$10,000 for charity!!

* And, yes, there will be a 2021
#DFIRFit challenge
— Well, if we make it to 2021

#OSDFCON

https://twitter.com/4enzikat0r

= What is this RDP Thing? =

* “Remote Desktop Protocol (RDP) is a proprietary protocol
developed by Microsoft, which provides a user with a
graphical interface to connect to another computer over a
network connection”

— This means someone can do stuff with things on another
computer, whether it is in the next room or halfway around the
world

#OSDFCON

D What Does That Have To Do With =D
My Investigations?

e Lateral movement in an environment

* Remote connection(s) to known/suspected malicious systems
* Unauthorized access

* Ransomware investigations

#OSDFCON

= =)

How | Got Interested in This Topic

* Working what seemed to be a typical ransomware case
— YARC

e This particular attacker actually cleaned up after themselves
— Cleared Event Logs
— Cleared “Recent” data

* This made answering the usual questions (who, what, how,
when, data access, data exfil, etc, EXTREMELY difficult)

#OSDFCON

= =)

How | Got Interested in This Topic

* Fortunately, the attacker did not clean up the RDP Bitmap
Cache files

— Since didn’t have much else to go on, this was at least

evidence of “something had happened”

.....

#OSDFCON

= WTF is RDP Bitmap Cache? =

e Let’s visit the source (
httos://docs.microsoft.com/en-us/openspecs/windows protocols/ms-rdpbcagr

[2da3e165-d1ba-4b65-8909-7a0f7f858d69)

“A Persistent Bitmap Cache is a store that contains bitmap images that were sent to
the client by using the Cache Bitmap (Revision 2) Secondary Drawing Order
([MS-RDPEGDI] section 2.2.2.2.1.2.3). Unlike the Bitmap Caches described in
section 3.2.1.13, Persistent Bitmap Caches are not bound to the lifetime of a given
RDP connection and their contents are persisted even after the RDP connection is

closed.”

#OSDFCON

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/2da3e165-d1ba-4b65-8909-7a0f7f858d69
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/2da3e165-d1ba-4b65-8909-7a0f7f858d69

= Yeah, That Doesn’t Help =

e Okay, that admittedly was a lot

While it is not technically 100% accurate, a better way to think
of it is kind of like taking snapshots of the entire screen during
an RDP session, which are written to disk on the endpoint that
the RDP session originated from

#OSDFCON

KTOP-N12V7FQ - Remote Desktop Connection

Recycle Bin

Certification
Tool

D

Google
Chrome

IT WORKED

; 5:12 PM
&R Search the web and Windows o . = o) B 10/14/2015

2 Oh, That Is Better, Thank Youl! D

* The location of the RDP Bitmap Cache files has shifted over
the years, but for the most part they can be found under the

path “%USERPROFILE%\AppData\Local\Microsoft\Terminal
Server Client\Cache\”

#OSDFCON

= =)

More Technical Details

* On older systems, you will usually have a file with a .bmc
extension

 Windows 7 and newer systems, you will likely see files that
are named “Cache#it#tt.bin” (these are incrementally
numbered starting at 0000)

* Both file types contain what are essentially small chunks of
screenshots that are saved of the remote desktop

#OSDFCON

D More Reading (AFTER This 2D
Presentation, please!)

e https://www.allthingsdfir.com/do-you-even-bitmap-cache-bro/

e https://countuponsecurity.com/tag/rdp-bitmap-cache/

e https://cbtgeeks.com/2018/05/22/digital-forensics-on-rdp-cache/

e RDP Cache Forensics - 13Cubed:
https://www.youtube.com/watch?v=NnEOk5-Dstw

e https://www.brimorlabsblog.com/2019/06/phinally-using-photoshop
-to-phacilitate.html (Hey, that one is mine!)

#OSDFCON

https://www.allthingsdfir.com/do-you-even-bitmap-cache-bro/
https://countuponsecurity.com/tag/rdp-bitmap-cache/
https://cbtgeeks.com/2018/05/22/digital-forensics-on-rdp-cache/
https://www.youtube.com/watch?v=NnEOk5-Dstw
https://www.brimorlabsblog.com/2019/06/phinally-using-photoshop-to-phacilitate.html
https://www.brimorlabsblog.com/2019/06/phinally-using-photoshop-to-phacilitate.html

- Well Brian, We Can Read. So Why =)
Are You Here?

* Well, part of the reason is because, like everything else that |
do, | want to find an easier way to get usable information
from this data source

* | very much enjoy OSDFCON every year, and this is an open
source project, so it makes sense
— Although this time, it is virtual. Which means not watching
giant robots fight, while enjoying a stack of pizzas
approximately one Sarah Edwards high, with ~20 of my
closest friends

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

e Step 1: Extract the data from the RDP Bitmap Cache file(s)
— | always use the -b flag ... but that is up to you

* In my opinion, best current option for this is the Python script
from the ANSSI (agence nationale la sécurité des systemes
d’information) github repository NSCRDEs

% Qf"{,\
— https://github.com/ANSSI-FR/bmc-tools g 2
Note: Use Python v2 3) 5
7, eo\
" ANsSt

#OSDFCON

https://github.com/ANSSI-FR/bmc-tools

2 You Put Files In, You Get Usable D
Data Out

 Made a small update to the script to fix a bug
— The data within the header, referencing file size, is off by 4
bytes (four bytes too long)
* Most likely counted the “BM” file header (2 bytes) plus
hex representation of file size (2 bytes), twice
— Opened bug request

Psecuarré Dpg

e Until it is addressed, use this one:

ANSS\

https://github.com/brimorlabs/rdpieces/blob/master/modifie
d-bmc-tools.py

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* Alternatively, a PowerShell option is available if you wish to
use it.
— https://github.com/gtworek/PSBits/blob/master/DFIR/Dec
odeRDPCache.psl
— Note: My solution does not currently support the output
from this script (if enough interest/requests are made, |
can work on building support for this output too though)

#OSDFCON

https://github.com/gtworek/PSBits/blob/master/DFIR/DecodeRDPCache.ps1
https://github.com/gtworek/PSBits/blob/master/DFIR/DecodeRDPCache.ps1

2 You Put Files In, You Get Usable D
Data Out

* Step 2: We now have results. Folder structure probably looks
like this:

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

Name A Date Modified Size Kind

» @ Cache0000
» [Cache0001

» [Cache0002

Jun 17, 2019 at 3:45 PM -- Folder
Jun 16, 2019 at 11:56 PM -- Folder
Jun 17, 2019 at 12:13 AM -- Folder

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

Name ~ Date Modified Size Kind
Cache0000.bin_0000.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0001.bmp Jun 16, 2019 at 11:01 PM 9KB Windows BMP image
Cache0000.bin_0002.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0003.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0004.bmp Jun 16, 2019 at 11:01 PM 9KB Windows BMP image
Cache0000.bin_0005.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0006.bomp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0007Z.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0008.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0009.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image
Cache0000.bin_0010.bmp Jun 16, 2019 at 11:01 PM 17 KB Windows BMP image

#OSDFCON

Content

¥ Run as a

Troubles|

Pin to St;

Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin
_0004.bmp _0010.omp _0038.bmp _0158.bmp _0164.bmp _0170.bmp

Network Running
Runnin:

Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin
_0206.bmp _0212.bmp _0366.bomp _0372.bmp _0399.bmp _0400.bmp

ed |
E ate shortcuf
ed u
jete
u
< ame

Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin
_0414.bmp _0428.bmp _0548.bmp _0560.bmp _0574.bmp _0602.bmp

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

| think this is how this all works?

STEP 1|STEP 2|STEP 3

Extract data Ensure

fromm RDP output

Bitmap Cache| folder(s) &
format are

correct

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* Step 4: Now you have a whole bunch of bitmap images
(usually 6000+) that are 64 x 64*, and one large bitmap file
with all of the tiles lined up (see next slide)

— You can now manually rearrange the individual bitmap
images, in hopes of “reconstructing” screen shots that are
automatically taken, and stored, during the RDP session

— This is a challenging, and tedious task

*While a majority are 64 x 64, not all of the images are actually

that size. Which makes reconstruction even trickier.
#OSDFCON

You Put Files In, You Get Usable D
Data Out

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

e
17 .

%

Content

¥ Run as a

Troubles|

Pin to St;

Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin
_0004.bmp _0010.omp _0038.bmp _0158.bmp _0164.bmp _0170.bmp

Network Running
Runnin:

Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin
_0206.bmp _0212.bmp _0366.bomp _0372.bmp _0399.bmp _0400.bmp

ed |
E ate shortcuf
ed u
jete
u
< ame

Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin Cache0001.bin
_0414.bmp _0428.bmp _0548.bmp _0560.bmp _0574.bmp _0602.bmp

#OSDFCON

D You Put Files In, You Get Usable =9
Data Out

#OSDFCON

MANQ -
(hopelfully) BiLLA BLE

HOURS LATER

/\ —_

D You Put Files In, You Get Usable =9
e Data Out

You Put Files In, You Get Usable
Data Out - Manual Reconstruction

Uoma s . E—
* NTLM
* SHA1
tspkg :

usei name . oy
* Domain : I . C O

* Password :
ssp :

wdigest :

* Username : SQLUENEE
* Domain :

* Password : (null)
kerberos :

SSASTELEMETRYSTGIC

User Name
Domain

Logon Server
Logot

SID

credr

Authenticatic
Sessinn

User

<

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

 On average, it takes between 20-40 hours to go through and
manually rebuild RDP Bitmap Cache data
— Fine if you have the time (or cough cough billable hours) to
do that
 Wanted to make an easier way to at least make slices, and
focus on individual slices rather than rebuilding the entire
picture

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* First thought was

MISSION DAY

SOL 7

| Ex 8
e B
(=T
o0 =
~No

HAB>BUNKS

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

» Started mapping out math, data visualization, statistics, etc.
that | thought would be needed

How it started How it’s going

, " hsllll.'r .
o0 Sanmtie

e o pEERul

JI0ER saO@L

it || i S R
W U EE

) L L=l o e

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* Enter imagemagick, which as it turns out, does almost
everything that | was hoping to find out, and more, already
— https://imagemagick.org/index.php

#OSDFCON

https://imagemagick.org/index.php

2 You Put Files In, You Get Usable D
Data Out

* Now that | found where the mathiness would come from, |
had to work on ensuring that my formulas worked fairly well,
were broad enough to capture less than ideal circumstances,
but at the same time, didn’t accidentally match too much

* So relieved that | wouldn’t have to do terribly complex data
manipulation
— However, it is worth noting that Python absolutely sucks

for doing even moderately advanced mathiness, but Perl
handles it all like a champ. Long Live Perl!

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* The next hurdle was deciding “how” to do this most efficiently
— Thankfully, my photography hobby (which | do not focus
on nearly enough anymore) came into play
— Alcohol helped too

#OSDFCON

PROGRAMMING
SKILL

-

Q0 .oi .o'H .66 OfF 10 Jz2 ™M 16 I8 .'io 2

BLOOD ALCOHOL CONCENTRATION (%)

> S— ¢
g |

N 26

2 You Put Files In, You Get Usable D
Data Out

 When matching puzzle pieces, you generally look for shapes
that go together ... and the shapes are determined by the
edges ...

... hmmm ... this line of thinking might actually take me

somewhere. Maybe. Possibly.
Probably need another drink ... | mean, RDP Bitmap Cache inspiration juice

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* So, maybe if | just take the edges of each slice, and figure out
how many colors, the color variance/standard deviation, and
some file name spatial awareness, maybe | could generate
some useful data

e After trial and error, deciding that the edge should be 5 pixels
in width/height, depending on if we are matching left/right or
top/bottom
— It’s not perfect, but it is at least a decent solution!

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* Used imagemagick to make a total of four new files (filename
+ L/R/T/B) for each 5x64 or 64x5 slice
— Code has been updated to account for numbers less than
64 now too, since that’s how these work (apparently)
* Pushed the resulting mathiness to a SQLite database that is in
memory (for returning faster results)

 The formula can (and undoubtedly will) evolve over time, but
it’s much easier building SQLite queries than computing

mathematical statistics of files!
#OSDFCON

= =)

Introducing: RDPieces.pl

e Perl script that automates everything | just talked about
— Runs cross platform (Windows, macQS, *nix)
* macOS/*nix may require some additional modules
* On Windows, use Strawberry Perl (the best Perl)
— Requires imagemagick to be installed
— Script cleans up after itself, deleting temp data directory

e At some point, might make a cool logo for it
— If large scale ransomware cases ever stop

* Well, at least slows down
#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* In my testing, there are roughly 400 results to review per
bitmap cache (compared to ~6400 files)

e Put limits on the maximum/minimum size of the slices,
because that is how math works

* Script also saves a folder with the rebuilt bitmap image, and
the original files used to build the bitmap image, if you want
to manually manipulate the files a bit.

— Much easier than doing it all manually

#OSDFCON

***xx Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6082.bmp

***xx Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6083.bmp
***xx NOTICE: Histogram contains only 4 color(s), moving to next file

*¥*x** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6084.bmp

**x*x Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6085.bmp
¥x*** NOTICE: Histogram contains only 5 color(s), moving to next file

*¥**x** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache0000.bin_6086.bmp

*¥**** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6087.bmp

**x*x Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6088.bmp

*¥*x** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache0000.bin_6089.bmp

*¥xx** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache0000.bin_6090.bmp

*¥*x** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache0000.bin_66091.bmp

*¥x*x** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6092.bmp

***xx Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@@00.bin_6093.bmp

***xxx Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6094.bmp

*¥*x** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache0000.bin_6095.bmp
*¥***x* NOTICE: Histogram contains only 2 color(s), moving to next file

#OSDFCON

¥¥*x* Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6083.bmp
*¥**x* NOTICE: Histogram contains only 4 color(s), moving to next file

¥*¥*x* Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache0000.bin_6084.bmp

¥x*x* Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@00O.bin_6085.bmp
¥¥*x* NOTICE: Histogram contains only 5 color(s), moving to next file

¥¥*x* Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@@00.bin_6086.bmp

*¥¥*** Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache0000.bin_6087.bmp

*¥x*x* Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@00O.bin_6088.bmp

¥¥*x* Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-Research/Testing/UAC
-IP-Test/Cache@000.bin_6089.bmp

= =)

Example of RDPieces.pl running

¥*¥%xx* Processing /Users/brimorlabs/Desktop/RDP-Bitmap-Cache-
Research/Testing/UAC-IP-Test/Cache@000.bin_6100.bmp

Now deleting the directory /Users/brimorlabs/Desktop/foobar/
Data/

A total of 12 files have been copied

The script took 00:00:24 to complete

#OSDFCON

> [LRFile154 May 12, 2020 at :
= LRFile154.bmp May 12, 2020 at -

000 LRFile154.bmp :

’
.
’
.

g 0.8 sneral f: 3.8: “or 8.8.¢
3% loss: = 4 (léneral f= 8, Lostceived = = 4, R«
ith 32 | aneral f: <

n 16.8.3 [Versi
ation. Ft Corpo

#OSDFCON

- ping 8.8.8.8

3 [Version 10.0.
*t Corporation.

g 8.8.8

yith 32 |

= @, Lost = 4 (100% loss

7] U U U S
- pINng &.0.048
A p g .0 ui

| "E?g 8.8.8. :neral f: 3.8: “or 8.8.¢

mn 10.08.5 [Versig 0% loss: = 4 (1leéneral f= ©, Lostceived = = 4, Re

‘ation. Ft Corpo . ith 32 t :neral f:

& e #OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* Because we have the original files that the slice was
comprised of, we can then go back and try to rebuild a more
complete picture with other slices and/or images

#OSDFCON

_h

H
0
o
¥

Name

Cache0000.bin_1712.bmp
Cache0000.bin_1713.bmp
Cache0000.bin_1714.bmp
Cache0000.bin_1715.bmp
Cache0000.bin_1716.bmp
Cache0000.bin_1717.omp
Cache0000.bin_1718.bmp
Cache0000.bin_1719.bmp
Cache0000.bin_1720.bmp
Cache0000.bin_1721.bmp

—~

DFCON

snd Prompt B Commyq L&}ﬂ_ O

3] 18363.815n 10.0.3 [Versic Window4icrosof
:s reserwll rightation. Ft CorporMicroso{c) 2019

user>ping 8.8.8}

istics for 8.8.¢Etherne
pts: Sent = 4, Re

acific Di
user>ipconfie /6 Addre
g 8.8.8, sneral f: 3.8: “or 8.8.¢

0% loss: = 4 (1leéneral f= O, Lostceived = = 4, Re
with 32 aneral e

- ping 8.8.8

m 10.0.5 [Versi(
"ation. Ft Corpor

#OSDFCON

DSeElis] R Command Promp

IMicrosoft Windows [Version 10.0.18363.815]
0(c) 2019 Microsoft Corporation. All rights reserved.

user>ping 8.8.8
Ethernet

PPt ettt e ra e et

bcific DP
/6 _Addres
istics for 8.8.

[Version 16.0. REREENE =y R

t Corporation.

4, Received = @, Lost = 4 (100% loss

#OSDFCON

2y Command Prompt

;Microsoft Windows [Version 10.0.18363.815]
0(c) 2019 Microsoft Corporation. All rights reserved.

user>ping 8.8.8

istics for 8.8.§

[VersTon 10.0. SERE ST PR

t Corporation.

Received = 0@, Lost = 4 (100% loss’

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out

* Hey, that isn’t too shabby, right?

* We can see that
— Windows command prompt was used
— User ran commands “ping” and “ipconfig”

#OSDFCON

2 You Put Files In, You Get Usable D
Data Out - The Next Generation

* This is going to be a continuing project
— Very much welcome feedback, comments, thoughts on
ways to improve it
My only caveat is that | want to keep this project entirely open
source.
— If Microsoft will not release technical details of how they
are doing/rebuilding it, at least we as a community can
band together to try to come up with a solution!

#OSDFCON

= =)

Cool Story Bro, Where Can | Get It?

* You can download the Perl script here:
— https://github.com/brimorlabs/rdpieces

e Again, my only caveat is that | want to
keep this project entirely open source
— | am sure there are different,
and probably better,
ways to perform mathiness

— Sharing is caring

#OSDFCON

https://github.com/brimorlabs/rdpieces

BriMor Labs

RDPieces.pl

This script will parse extracted RDP Bitmap Cache directory(ies) and attempt to rebuild some of the screenshots automatically. A
user is required to extract the bmp files already, best done by using the script from htips://github.com/ANSSI-FR/bmc-tools

Usage example: rdpieces.pl -source "RDPBitmapFiles” -output "Rebuilt Images”
SUPPORTED PLATFORMS:

« Windows
*« macOS
e *nix

REQUIREMENTS:

* Needs output from ANSSI bmc-tools Python script (use Python 2)
* May require some additional Perl modules
* On Windows, highly suggest using Strawberry Perl

* Users must have Imagemagick installed on their system, as that program does most of the heavy lifting. Please visit
https:/fimagemagick.org and install imagemagick if you have not done so already

2 You Put Files In, You Get Usable D
Data Out ‘ol

 Heather (@LitMoose) summed it up best:

:“ “ 4 k.
“It is like putting together an adult jigsaw puzzle, but for forensic
analysts”

She also said something to the effect of “it’s kind of relaxing”,
which makes me question things about her @

#OSDFCON

= =)

Naughty By Nature said it best ...

YOU DOWN WITH RDP

YEAH YOU KNOW ME

Questions?

Brian Moran
Twitter: @brianjmoran

Email: brian@brimorlabs.com

Wear a mask
Wash your hands
Practice social distancing
Avoid large (in-person) gatherings

#OSDFCON

